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Learning Objectives

– Big Data
– The three V's: Volume, Velocity and Variety
– Ethical challenges for Big Data Processing

– Scale-Agnostic Data Analytics Platforms
– Scale-Up vs. Scale-Out
– MapReduce principle; similarities to SQL
– Role of modern Big Data platforms

MapReduce, Apache Spark, Flink or Hive
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Big Data
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Big Data

the three Vs:

[cf. article by 
Doug Laney, 2001]

[Barton Poulson "Techniques and Concepts of Big Data", 2014]
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Big Data: Volume

– very relative due to Moore's Law
– What once was considered big data, is considered a main-memory 

problem nowadays
– eg. Excel: In 2003 max 65000 rows, now max 1 million rows, still ...

– Nowadays: Terabyte to Exabyte
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Big Data: Velocity

– conventional scientific research:
– months to gather data from 100s cases, weeks 

to analyze the data and years to publish. 
– Example: Iris flower data set by Edgar Anderson 

and Ronal Fisher from 1936

– on the other end of the scale: Twitter
– average 6000 tweets/sec, 500 million per day 

or 200 billion per year
– Cf. life Twitter Usage Statistics

http://www.internetlivestats.com/twitter-statistics/
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Big Data: Variety

– Structured Data, such as CSV or RDBMS
– Semi-structured Data, such as JSON or XML
– Unstructured Data, ie. text, e-mails, images, video

– an estimated 80% of enterprise data is unstructured

– study by Forester Research: variety biggest challenge in Big Data
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Big Data Examples

Big Data for Consumers (examples)
– Siri, Yelp!, Spotify, Amazon, Netflix, Google Now
– Some Big Data Variety examples:

– "Neighborland" App [https://neighborland.com]
– "WalkScore.com" [https://www.walkscore.com]

Big Data for Businesses (examples)
– Google Ads Searches
– Predictive Marketing

– Example "EDITED.com": predicting fashion trends
– Fraud Detection
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Big Data Examples: Big Data for Research

– Astronomy: Sloan Digital Sky Survey (SDDS) SkyServer
– Cern's Large Hadron Collider (LHC)
– The Human Brain Project
– Personalities in the United States 

(cf Journal of American Psychological Association)
– Google Flu trends   (only historic data; stopped publishing new trends)
– Apple COVID19 Mobility Trends (https://www.apple.com/covid19/mobility)
– Google Books project 

– (eg. changes of word usage over time (eg. maths vs arithmetic vs algebra) 
https://books.google.com/ngrams/graph?content=math,arithmetic,algebra&
case_insensitive=off&year_start=1800 )
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Big Data Challenges beyond Technical Aspects

– Data Privacy
– Some data sources, such as "Internet-of-Things”, allow tracking anyone

• Do you really need to know who was travelling a route in order to predict, e.g., 
traffic densities? 

• Personal data can be inferred sometimes => New York Taxi data set example
– Privacy laws

• Always check: Are you allowed to use some data or process is anywhere?
• Some personal data, especially regarding health or tax, is specially protected; 

e.g., not allowed to leave a jurisdictive area
• e.g. EU’s General Data Protection Regulation (GDPR) applies to any company 

holding data about any European Union citizen
– Data Security

– Can your users trust you to keep their data safe? 
– Big data can expose your organization to serious privacy and security attacks!

“[…] consider that great responsibility follows inseparably from great power” [French National Convention,1793]

http://www.eugdpr.org/
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Use Case: COVIDSafe App

– Tool to help contact tracing – who was in close contact to a known COVID-19 case? 
– The app does not collect location data, but

just events of being in close proximity
of another COVIDSafe app user (via BT)

– Data is stored encrypted locally on the
phone for 21 days, then overwritten.
– Data only uploaded to cloud (AWS…)

on request after personal permission
– Benefit to society vs. Privacy concerns

– Which data collected and how stored? 
• Locally: anonymised close contacts (date, time, distance, duration, and other user’s refcode); 

cloud: meta-data (refcode; phone#, nickname, age range, postcode)

– Where is data processed?     => cloud, resp. by contact tracers
– Who has access to this data? => only contract tracers; protected by Biosecurity Privacy Laws
– Does it work?  False positives/negatives are possible => risk of false sense of security…

https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
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Big Data Challenges beyond Technical Aspects (cont’d)

– Data Discrimination
– Is it acceptable to discriminate against people based on data on their lives?
– Credit card scoring? Health insurance?
– Cf. FTC: "Big Data – A Tool for Inclusion or Exclusion?" 

[https://www.ftc.gov/system/files/documents/reports/big-data-tool-inclusion-or-
exclusion-understanding-issues/160106big-data-rpt.pdf]

– Check:
– Are you working on a representative sample of users/consumers?
– Do your algorithms prioritize fairness? Aware of the biases in the data?
– Check your Big Data outcomes against traditionally applied statistics practices

– Keep in mind other Vs of Big Data:
– Validity (data quality), Veracity (data accuracy / trustworthiness), …
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Big Data Examples
Customer
– Twitter Life Statistics:  http://www.internetlivestats.com/twitter-statistics/
– Walkscore: https://www.walkscore.com
– Neighborland: https://neighborland.com
Business
– Predictive Marketing:  EDITED.com
Journalism
– TimesMachine: http://timesmachine.nytimes.com/browser
– Panama Papers: http://panamapapers.sueddeutsche.de/en/
Research
– Cern LHC open data access: http://opendata.cern.ch/?ln=en
– SDDS SkyServer: http://skyserver.sdss.org/dr12/
– Human Brain Project: https://www.humanbrainproject.eu
– Google Flu Trends:  https://www.google.org/flutrends/about/
– Google Books nGrams: https://books.google.com/ngrams/
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Analysing Big Data
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Data Science Workflow

[Source: http://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/]

Analysing ‘Big Data’ with “scripts”?
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Case for Data Science Platforms

– Data is either 
– too large (volume),
– too fast (velocity), or
– needs to be combined from diverse sources (variety)
for processing with scripts or on single server.

– Need for
– scalable platform
– processing abstractions
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Jupyter Notebooks as Platform for Big Data?

Jupyter Server
(Python)

csv file read
psycopg,
…

Web 
Browser

http

Database System

network

– This does not scale to petabyte of data
– Which approach for Amazon? Facebook? a, b ,  c

1, foo, 4.5
2, bar, 1.3
3, oho, 9.0

… 

a, b ,  c
1, foo, 4.5
2, bar, 1.3
3, oho, 9.0

… 
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Case Study: LinkedIn
– Started in 2003

– 2700 members in first week
– Single database and web server

– for years experienced exponential growth…
– As of Jan 2018:

(https://www.omnicoreagency.com/linkedin-statistics/)

– 500 million members
– 250 million active users / month
– Many users with hundreds of connections => huge graph
– Fun Fact: Statistical Analysis and Data Mining are Top skills on Linkedin

– world’s 34th-most-popular website in terms of overall visitor traffic (Alexa, Dec-16)   
(https://www.alexa.com/topsites)

• For comparison: Microsoft is #37

Source: https://engineering.linkedin.com/architecture/brief-history-scaling-linkedin

https://www.omnicoreagency.com/linkedin-statistics/
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Scale-Up

– The traditional approach:
– To scale with increasing load, 

buy more powerful,   larger 
hardware

• from single workstation
• to dedicated db server
• to large massive-parallel   

database appliance

[source: Jim Gray, HPTS99]
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The Alternative:  Scale-Out

A single server has limits…
For real Big Data processing, need to 
scale-out to a cluster of multiple servers (nodes):

shared-nothing architecture

State-of-the-Art:
[Source: Server.png from PinClipart.com]

[recall Wk5]
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Kafka

Azkaban

Hadoop
Hive

Hadoop
Hive

Hadoop
Hive

Hadoop
Hive

Hadoop
Hive…

Case Study: LinkedIn Analytical Architecture 
”We have multiple grids divided up based upon purpose.
Hardware:

~800   Westmere-based HP SL 170x, with 2x4 cores, 24GB RAM, 6x2TB SATA
~1900 Westmere-based SuperMicro X8DTT-H, with 2x6 cores, 24GB RAM, 6x2TB SATA
~1400 Sandy Bridge-based SuperMicro with 2x6 cores, 32GB RAM, 6x2TB SATA
…

We use these things for discovering People You May Know and other fun facts.”

LinkdIn via https://wiki.apache.org/hadoop/PoweredBy/

…
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Challenges

n Scale-Agnostic Data Management
n sharding for performance
n replication for availability
n ideally such that applications are unaware of underlying complexities
n cf. Week 5

n Scale-Agnostic Data Processing
n Nowadays we collect massive amounts of data; how can we analyze it?

nAnswer: use lots of machines…  (hundreds/thousands of CPUs, can grow)
n Performance: parallel processing
n Availability: Ideally, the system never down; can handle failures transparent
=> Map/Reduce processing paradigm



DATA2001 "Data Science, Big Data, and Data Diversity" – 2022 (Roehm) 23

Scale-Agnostic Data Analysis

The MapReduce Principle
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Big Data Analytics Stack
– Layered stack of frameworks for distributed data management and processing
– Many choices of distributed data processing platforms

Application

Storage

Infrastructure

[slide by Ion Stoica, UCB, 2013]

Data Processing MapReduce
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MapReduce Overview

– Scan large volumes of data
– Map: Extract some interesting information
– Shuffle and sort intermediate results
– Reduce: aggregate intermediate results
– Generate final output

– Key idea: provide an abstraction at the point of these two operations (map 
and reduce)
– Higher-order functions
– Cf. map functions in functional programming languages such as Lisp or 

Haskell

12-25
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MapReduce Paradigm

– Functional Programming approach to data processing
– map() : applies a given function f to all elements of a collection; 

returns a new collection
– map (f, originalList)

Diagram from Yahoo! Hadoop Tutorial
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MapReduce Paradigm: Reduce()

Keys divide the reduce space
all of the output values are not usually reduced together. All of the 
values with the same key are presented to a single reducer together

Diagram from Yahoo! Hadoop Tutorial

reduce(): applies a given function g to all elements of an input list;
produces, starting from a given initial value, a single (aggregate) output value
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Similarities between SQL-Queries and MapReduce

– A standard map-reduce task is similar in its functionality to declarative 
aggregation queries in SQL:

SELECT out_key, reduce(out_value)
FROM map(InputData)

GROUP BY out_key

New in MR-Paradigm: map and reduce() as higher-order functions 
which take a user-defined function with the actual functionality.



DATA2001 "Data Science, Big Data, and Data Diversity" – 2022 (Roehm) 29

Example: Word Count program
– Word Count programmed as standard linear program

– Two nested for loops
– Difficult to generalise or parallelise
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Example: Word Count

– Input:
– List of documents that contain text
– Provided to MapReduce in the form of

(k: documentID, v: textcontent)  pairs

– Goal:
– Determine which words occur in the documents and how often
– E.g. for text indexing…
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MapReduce Approach

To solve the same problem using MapReduce, we need

1. map() function   (aka mapper)

2. reduce() function (aka reducer)

3. Some control code that connects mapper and reducers
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Example: Word Count in MapReduce
– Word Count programmed using Map/Reduce paradigm
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MapReduce Generalised

– Previous example was hard-coded for word count
– We can generalise the pattern for the driver code even further

mapper and reducer are now also inputs

Call to function needs 3 arguments: data, mapper and reducer
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Example Word Count with MapReduce

Decentralised 
Structured 
Storage System

Google File 
System

Distributed 
Storage System 
Structured Data

doc1

doc2

doc3

(in_key, in_value)

map
(Google, 1) 
(File, 1) 
(System, 1)

(Decentralized, 1) 
(Structured, 1) 
(Storage, 1)
(System, 1)

(Distributed, 1) 
(Storage, 1)
(System, 1)
(Structured,1)
(Data, 1)

(out_key, value)

(Google, {1}) 
(File, {1}) 
(System, {1,1,1})
(Decentralized,{1})
(Structured, {1,1})
(Storage,{1,1})
(Distributed, {1})
(Data,{1})

shuffle

(out_key,list(value))

(Google, 1) 
(File, 1) 
(System, 3)
(Decentralized,1)
(Structured,2)
(Storage,2)
(Distributed,1)
(Data,1)

reduce

(out_key, out_value)

Map Phase Reduce Phase
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Why Scale-Agnostic?

– Note that the functions given to map() and reduce() only rely on local input
– functions without side-effects and independent of each other
– function invocation is agnostic to the scale (size) of the overall dataset 

– Can hence be parallelized easily
– Partition the dataset over multiple nodes
– apply different instances of the same map/reduce functions to each 

partition independently / in parallel

– Fits perfectly to a scale-out approach
– bigger data => more nodes and data partitions => more parallelism 

=> same or faster speed
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MapReduce Discussion

Pros:

– very flexible due to the 
user-defined functions

– great scalability
because FP approach

– easy parallelism due to 
stateless functions

– fault-tolerance

Cons:
– requires programming skills 

and functional thinking
– relatively low-level, even 

filtering to be coded manually
– complex frameworks

– batch-processing oriented
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Distributed, Dataflow-Oriented Analytics Platforms
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Challenge:  Iterative Algorithms

– Many data mining and machine learning algorithms rely on global state and 
iterations

– Examples:
– data clustering (eg. k-Means)
– frequent itemset mining (eg. Apriori algorithm)
– linear regression
– collaborative filtering
– PageRank
– … R

M
J

M
R R
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Distributed Data Analytics Frameworks

– Apache Hadoop
– Open-source implementation of original MapReduce from Google; Apache top-level project
– Java framework, but also provides a Python interface nowadays
– Parts: own distributed file system (HDFS), job scheduler (YARN), MR framework (Hadoop)

– Apache Spark
– Distributed cluster computing framework on top of HDFS/YARN
– Concentrates on main-memory processing and more high-level data flow control
– Originates from research project from UC Berkeley

– Apache Flink
– Efficient data flow runtime on top of HDFS/YARN
– Similar to Spark, but more emphasize on build-in dataflow optimiser and pipelined processing
– Strong for data stream processing
– Origin: Stratosphere research project by TU Berlin, Humboldt University Berlin and HPI Potsdam
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Distributed Data Analytics Frameworks (continued)

– Apache Hive
– Provides an SQL-like interface on top of Hadoop / HDFS
– Allows to define a relational schema on top of HDFS files, and to query and analyse data with 

HiveQL (SQL dialect)
– Queries automatically translated to MR jobs and executed in parallel in cluster
– Example: WordCount in HIVE

DROP TABLE IF EXISTS docs; 
CREATE TABLE docs (line STRING);
LOAD DATA INPATH 'input_file' OVERWRITE INTO TABLE docs; 

CREATE TABLE word_counts AS
SELECT word, count(1) AS count 
FROM (SELECT explode(split(line, '\s')) AS word FROM docs) temp
GROUP BY word
ORDER BY word;

– Many more high-level frameworks for advanced data analytics.
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Example Dataflow Execution Stack: Apache Spark

[Apache Spark Architecture, Apache website]
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Example: WordCount in Apache Flink (Python)

from flink.plan.Environment import get_environment
from flink.functions.GroupReduceFunction import GroupReduceFunction

env = get_environment()
data= env.read_text("hdfs://…");

data.flat_map(lambda x,c: [(word,1) for word in x.lower().split()]) \
.group_by(0)                                                    \
.sum(1)                                                        \
.write_csv("hdfs://…")

env.execute()

[Cf.: https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/batch/python.html]
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Summary
– Big Data

– The three V's: Volume, Velocity and Variety
– Ethical challenges for Big Data Processing
– Scale-Up versus Scale-Out

– Scale-Agnostic Computation
– Parallelisable higher-order functions map & reduce
– MapReduce principle; similarities to existing material and SQL

– Scale-Agnostic Data Analytics Platforms
– Data Scientists need more high-level tools and interfaces than MapReduce
– Examples: Apache Spark or Apache Flink or Apache Hive
– Componentized infrastructure: SQL querying, ML-Libraries, Streaming, etc.
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Learn More

– DATA3404 Data Science Platforms


