

Assignment 2

1701ICT— Creative Coding

School of ICT

Griffith University

Trimester 2, 2020

Milestone 1 (30%) is due at the end of Week 9 with demonstrations to

be held in your week 10 workshop. (11:59pm Sunday 20th September)

Milestone 2 (30%) is due at the end of Week 11 with demonstrations to

be held in your week 12 workshop. (11:59pm Sunday 4th October)

Instructions

● Due: Milestone 1, 11:59pm Sunday 20th September. Milestone 2 11:59pm Sunday 4th

October)

● Marks: 60% of your overall grade (30% each milestone)

● Late Submissions: Late submission is allowed but a penalty applies. The penalty is

defined as the reduction of the mark allocated to the assessment item by 5% of the

total weighted mark for the assessment item, for each working day that the item is

late. A working day is defined as Monday to Friday. Assessment items submitted more

than five working days after the due date will be awarded zero marks.

● Extensions: You can request for an extension of time on one of two grounds;

○ medical

○ other (e.g., family or personal circumstances, employment-related

circumstances, unavoidable commitments).

All requests must be made through the myGriffith portal.

● Individual Work: You must complete this assignment individually.

● Presentation: You must present/demonstrate your work in your week 10 workshop

(milestone 1) and week 12 workshop (milestone 2) to a teaching team member. Your

work will not be marked if you do not present it.

● Other: This assignment is a mandatory pass component. You must attain 40% (24/60)

to be eligible to pass the course.

Overview

The purpose of this assignment is to assess your ability to implement complex interactions

between separate modules using JavaScript and p5.js. Each Question should be submitted on

L@G in a separate .js file (titled q1.js, q2.js etc.), but you do not need to submit html and css

files. Some of the questions will require you to investigate some concepts outside of the

lecture notes. Please make sure that all code that you submit is your own and is not

taken/copied from anywhere else.

Milestone 1 (due end of Week 9, 11:59pm Sunday 20th September)

Question 1 (15 marks) – Super Speed Sprint Racer

In p5.play, sprites provide some additional functionality over normal images. Using p5.play,

create a simple top-down racing game similar to Super Sprint

(https://en.wikipedia.org/wiki/Super_Sprint) but simpler, with the following specifications:

 The program should read a track in from a file called ‘track.txt’. 0 should indicate

grass, 1 should indicate track and 2 should indicate start/finish line. You should

find/draw appropriate images to use as tiles to represent these components, and it

is recommended that you load them in as sprites. Each ‘tile’ should have dimensions

controlled by variables, and be positioned according to the input file. If the input file

is 10x10 numbers, you should draw this many tiles. The track is static, so this could

be drawn in the setup phase, but you will need access to this data for detecting the

car leaving the track (3 marks)

 The program should draw a car as a sprite on the start finish line, facing one of the

adjacent road tiles. You could draw or find a suitable image to use. The car size

should be controlled by a variable (but always smaller than the tile size) and be

placed in the middle of the road. (2 marks)

 The program should allow for 4 inputs – up/down and left/right on the keyboard. Up

and down should modify the velocity of the car (you should impose limits so it

cannot go too fast or backwards). Left and right should rotate the angle it is facing

and moving. This should be done in a smooth way so the car cannot execute instant

90 degree turns. (4 marks)

 If the car leaves the track and hits the grass, the game should reset to the start

position (simply move the car back to its initial position) (3 marks)

 Extra (3 marks): Add additional features to your mini-game – car physics, animation,

sound, gameplay mechanics, track features, or other.

For this question, we are not assessing your ability to write a full game (Milestone 2 covers

this), but are more interested in demonstrating your ability to use p5.play and other

features.

Question 2 (15 marks) – Travelling Salesperson

The travelling salesperson problem (TSP) is as follows; "Given a list of cities and the distances

between each pair of cities, what is the shortest possible route that visits each city exactly

once and returns to the origin city". The problem was first formulated in 1930 and is one of

the most intensively studied problems in optimization. Even though the problem is

computationally difficult, a large number of heuristics and algorithms are known, so that

some instances with tens of thousands of cities can be solved completely and even problems

with millions of cities can be approximated within a small fraction of 1% optimal distance.

https://en.wikipedia.org/wiki/Super_Sprint

This question has 3 parts:

a) loadTSP(filename) (4 marks). Write this p5.js function that will read a TSP problem

from a .tsp file. For this assignment, we will only consider Euclidean distance

problems. The information you need to load in includes the problem name, total

number of cities, the id of each city, and the co-ordinates of those cities. You could

store the city information as 3 parallel arrays (ids, xcords, ycoords) or an array of

objects with an id, x and y value. You can find the TSPLIB documentation and the

dataset with Euclidean only problems on the course website. Your function should

take the name of a .tsp file to load.

Hint: Reading the TSPLIB.pdf file can be a little daunting. Have a look at some of the

actual .tsp files (berlin52.tsp, a280.tsp). It should make the problem seem a lot easier.

b) showLoadedTSP() (4 marks). Write this function that will visualise a loaded problem.

You will need to find a way to scale the loaded problem to fit correctly on the canvas.

You may choose what shapes/colours to use to visualise the problem. You should

make sure you display the problem name and number of cities somewhere on the

canvas.

c) showSolution(solutionFile) (4 marks). Write this function that will visualise a solution

to a loaded problem from a file. You may assume that this function will only be used

AFTER showLoadedTSP() has already been run. The first line of a .sol file contains the

problem file name (you should check this matches the loaded TSP). The second line

contains the tour length, and the rest of the file contains a list of ID’s (one on each

line) that represents the order that the cities should be connected to form the shortest

tour. You should display the solution tour distance on the canvas. Some sample .sol

files have been provided on the course website.

Challenge (3 marks): Make the program animate the tour. The program should show the

salesman starting from the first city and smoothly moving between all the cities leaving

the tour as a trail behind them until they reach the last city and return back to the first

one. You can loop this animation if you wish.

Extra / Bonus: (No marks, just kudos). Investigate algorithms to solve tsp problems. You

could start with Greedy search, and then move on to something like 2-opt. Try and

implement a solver to generate your own solutions to TSP problems. This is advanced

work and not part of the course. Do this AFTER finishing everything else.

Milestone 2 (due end of Week 11, 11:59pm Sunday 4th October)

Game (30 marks)

You will be creating your own version of the ‘Galaga’ game. This is provided as inspiration,

but the possibilities are vast (eg. Raiden, Strikers 1945)

Requirements

1. Multiple Scenes

The game must involve at least 4 scenes, there must be a:

 Loading / splash scene

 Main menu scene

 Main game scene

 Leaderboard scene

You should be able to navigate between the scenes

Note: each scene needs to only be navigable by at least one other scene (with the exception

of the loading scene, it can be a time-oriented screen)

2. Loops

The game must use at least 3 loops which are fundamental to the operation of the program.

3. Arrays

The game must incorporate at least 3 arrays, with at least 1 of the arrays being used to

manage a list of objects on the screen (such as opponents).

4. Interactivity

There must exist player interaction using a keyboard. The game needs to handle at least 3

keyboard keys.

5. Images

There must be at least 1 image present in the final product (separate to sprites) that is drawn

at an appropriate size.

Note: it is up to you which scene you incorporate the image in.

6. Sprites

The p5.play library must be incorporated with a minimum of 3 sprites used. The sprites must

have collision detection (between sprites) and must move independently. Sprites must be

animated (i.e. a moving object, changing size or color)

7. Video & Sound

The game should use at least 3 sounds and 1 video. Hint: you can use sounds for shooting and

video to introduce the game in the main screen.

8. GUI Input

At least one type of GUI input is required (e.g. text input, slider, button). The input should

affect what is drawn.

9. Data

The program needs to read in data from a JSON file where each object must have at least 3

properties. This data must be presented in the sketch in one of the scenes.

Hint: if your themes / ideas of the main game scene conflict with using external data, use the

data in the leaderboard scene.

10. Stability

The game must feel stable to play. Your game should not feel ‘buggy’.

11. Creativity

You must produce creative work that adds complexity to your game.

Examples of creative work that add complexity to your game include:

 Having multiple types of enemies

o One may shoot lasers slow but move fast, the other may shoot lasers fast but

move slow

 Having a dynamic background

o Stars (sprites or images) may traverse down the screen in a straight line, being

generated at random rates & positions from the top of the screen

 Having multiple modes of fire

o Your ship may fire in a straight line in its unaltered state, but when picking up

a ‘bonus’ blob (that traverses down the screen every 20 seconds, 30 seconds

if missed) the ship has an altered mode of fire, such as shooting in multiple

directions.

 UI & Fonts

o You may download and use custom fonts that better fit your theme.

 Score & Sound Effects

o Play a special sound every 10 enemies destroyed and add relevant bonus

scoring.

 Enemy health

o Enemies only fall after being hit 3 times. Use an array to store the health of

individual enemies and update it upon collision detection.

 Ability to change the difficulty of game

o Could be as simple as having two difficulty options that change the number of

lives available, or as creative as having increased speed of incoming fire /

increased toughness of opponents.

You are encouraged to create your own assets (i.e. opponents or laser fire) on top of using

public assets from the internet.

Note: the ability to creatively expand your game is highly dependant on having basic

functionality, such as interactivity.

12. Code

You must produce clean, well-written code. This encompasses indentation, meaningful

naming of functions & variables, use & overuse of absolute values.

