
COMSC-205PY SPRING 2021 Assignment 6
Submission checklist
Your ​Assignment 6 ​submission should be a zip file which contain​s the ​following directory
structure:

● Assignment6
○ BinaryTree​.​py
○ TreeNode​.​py
○ GameTreeReader​.​py
○ GuessingGame.py
○ UnrestrictedGuessingGame.py
○ tree.txt

At the top of each file that you create or modify, clearly state:
● Your name and the name of the assignment
● Attribution for any sources used, including people (other than instructors) who you asked

for help
● Description of the file

Read all the way through this assignment twice before you start working on it. The
second time through, take notes, plan out how you will work on this.

Background
In the classic ​Twenty Questions​ game, one person thinks of something--anything--and other
people try to guess the thing by asking yes or no questions to narrow down what sort of thing it
is. If they guess it in fewer than 20 questions, they win. For this assignment, you will write a
program for a person to play 20 Questions with the computer. In this version of the game, the
human thinks of something and the computer will try to guess it. (We will ignore the 20
questions or fewer criteria for our game.)

You will implement two versions of the 20 Questions guessing game. The first version has a
pre-specified set​ of things. The second version allows an ​unrestricted​ set of things; it begins
with the pre-specified set but allows the user to add objects to the set.

The Assignment
Guessing Game

In this variation of the game, the choice of things is ​pre-specified​ and is shown to the user at
the start.

● You must have at least 16 pre-specified things
● These pre-specified things should be shown at the start of the game

Your application will need to read in a text file from the command line at runtime and store it in
an appropriate data structure, which is a binary tree. Starter code is provided to read in the text
file (GameTreeReader.py), along with our implementation of BinaryTree. To use

https://en.wikipedia.org/wiki/Twenty_Questions

GameTreeReader, you can use this code inside of GuessingGame.py, where filename is the
name of the text file you want to load. The getTree() method will return a BinaryTree object.

You should read over all of the starter code to get a sense of how it works. You do not need to
change any of the starter code, though if you have a good reason to change it you can. The
starter code contents:

● BinaryTree.py​ - a data structure
● BinaryTreeNode.py​ - a data structure
● GameTreeReader.py​ - text file reading code
● tree.txt ​- a sample file with the tree shown below:

 Is it one of Heather’s cats?
 ​yes​ / \ ​no

 / \
Does he have white paws? Is it one of Tayloe’s cats?

 ​yes​ / \ ​no yes​ / \ ​no
 / \ / \
 ​Reggie ​Bertie Is the cat white? Bubba

 ​yes​ / \ ​no
 / \

 ​Lexicon Mercury

Notice the following about this structure:

● It is a binary tree (but not a binary search tree)
● The things (cats) are all leaf nodes
● The questions are all internal (non-leaf) nodes
● The ​left child branches​ all correspond to ​yes​ answers while the ​right child branches

all correspond to ​no​ answers.

We will use a text file to store structured data about the questions and the things in a way that
allows the structured data to be read into a Python program. The example tree.txt file shows the
structure needed:

reader = GameTreeReader(filename)

tree = reader.getTree()

Is it one of Heather’s cats?

 Does he have white paws?

 Reggie

 Bertie

 Is it one of Tayloe’s cats?

 Is the cat white?

 Lexicon

 Mercury

 Bubba

Each tree level is separated by a tab. For example, the root node has 0 tabs; the root’s children
have one tab; the root’s grandchildren have two tabs, and so on. You may use the text.txt file to
get started on this assignment, or use its structure and replace the questions and things with
ones from your own theme. Eventually, you must replace it with ​your own txt file​ that has at
least ​16 things​ and questions to distinguish them. But to get started, it is strongly
recommended that you use this smaller tree to test. ​Do not use spaces; use tabs!

You will need to write ​GuessingGame.py​. It should be a class, and an attribute of the class
should be a BinaryTree. In GuessingGame.py, write code to navigate through the tree, taking
user input to go left or right as a user answers yes or no. At the end of the game, the program
should show the final answer, and ask if the guess was correct or not. It should then ask if the
user wants to play again, going back to the start if yes and quitting if no.

Now you are ready to write your own set of questions and things (the fun part of the
assignment!) and encode them in a txt file. Pay close attention to the structure and the nesting
of the tags and the attributes in the example txt file. The GameTreeReader class will not work if
the structure diverges from the structure of the example file.

Unrestricted Guessing Game

In this part, implement an "unrestricted" 20 questions game. You will need to write a class
UnrestricedGuessingGame.py​. It should ​inherit​ from GuessingGame.py. You will need to
expand your application to let the user pick a thing that is not on the pre-specified list.

● Start asking questions in the same way.
● If the computer gets to a point where there is only one thing remaining, and guesses

incorrectly (because the thing the user is thinking of is unknown), ​learn the thing.
● This will require asking the user:

○ What <thing> were you thinking of?
○ Please give me a yes/no question that would have determined your thing.
○ Is the answer to your question yes or no?

● Modify your data structure based on the answer so that the new thing is in the list for a
new round that is started within the session

When implementing UnrestrictedGuessingGame, the goal is for the class to inherit as much as
possible from its parent class. If designed efficiently, there does not need to be very much code

in UnrestrictedGuessingGame.py. This will likely mean that you will revise or redesign methods
in GuessingGame.py as you go.

Command Line Usage Examples
python3 GuessingGame.py tree.txt

python3 UnrestrictedGuessingGame.py tree.txt

How to Approach the Assignment
Be sure to break your process into smaller steps. We strongly recommend that you approach
the steps ​in the order outlined below​ and that you aim to complete Steps 1 and 2 no later than
one week before the project due date.

1. Create your own set of things and write your own tree file
1. Also create a smaller set of 2-3 things and use this as you write your code

2. Design the user interaction portion of the game
1. think of information that needs to be presented to the user
2. think of information that needs to be gotten from the user
3. sketch out the design on paper

3. Design and implement the backend
1. think of the data (state) that needs to be stored -> this should help you decide

what attributes to have in the classes
2. think of the behavior that must be supported by the various classes -> this should

help you decide what methods are required
3. implement the methods, testing constantly!

4. DEBUG :)

Rubric
Each section will be given a letter grade. The average of those letters will generate your final
score. Note: Moodle does not allow letters, so they will be translated into a percentage there.
 F D C B A

File Reading

Partial
code/pseudocod
e present, but
not functional

The tree is
hard-coded,
rather than
being read from
a file

The txt file is
missing

A txt file is
mostly read in
by the program,
with a bug or
two, or there are
fewer than 16
things in the file,
or the list of
answers is
hard-coded

A txt file is
included, read in
by the program,
and made into a
tree

Guessing Game

Partial
code/pseudocod
e present, but
not functional

Game does not
take user input,
or does not
navigate tree

Game does not
accept some
inputs, or skips
many questions,
or only
navigates some
of the tree

Game skips a
question, or
does not replay,
or does not ask
if answer was
correct

Game asks
yes/no
questions,
navigating
through the tree,
asking for user
input until
reaching the
answer. At the
answer, game
asks if the
answer was
correct, and
asks to play
again (and
responds
appropriately)

Unrestricted
Features

Partial
code/pseudocod
e present, but
not functional

New question
and answer are
not added, or
game cannot be
replayed

New answer is
added, but
replaces old
one; new
question is
added, but
replaces old
one; other major
bad bug

Gameplay is
changed from
before, or tree is
added to in
slightly incorrect
location, or
similarly small
bug

Game plays as
before. When
responding “no”
to a final
answer, a new
answer and
question can be
added, and the
game restarts.
Replaying the
game, the new
answer and
question are
included in the
correct location.

Comments,
naming, style

No comments
present, no
name in file,
method names
incorrect

Name in file,
some methods
named
correctly, no
comments

Name in file,
description of
file in comment,
methods named
correctly (typos
ok), more than
one error that
prevents
running

Name in file,
description of
file and most
methods,
methods named
correctly, some
variables named
meaningfully,
significant over-
or under-use of
comments or
one error that
prevents
running, or
missing helper
files (like
LinkedListNode)

Name in file,
description of
file and all
methods,
methods named
correctly, all
variables named
meaningfully,
other comments
as needed, no
errors that
prevent running

