
Page 1 of 7

SYSC 4810: Introduction to Network and Software Security

Module 3 Assignment

Fall 2021

Dr. Mostafa Taha

Carleton University

Department of Systems and Computer Engineering

Posted: Friday November 4, 2022

Due on Sunday, November 13, 2022 by 11:59PM

This assignment contains 7 pages (including this cover page) and 2 Tasks, with 5 total problems. You are

responsible for ensuring that your copy of the assignment is complete. Bring any discrepancy to the

attention of your instructor.

Special Instructions:

1. Do as many problems as you can.

2. Start early as this assignment is much more time consuming than you might initially think!

3. The burden of communication is upon you. Solutions not properly explained will not be

considered correct. Part of proper communication is the appearance and layout. If we cannot

“decode” what you wrote, we cannot grade it as a correct solution.

4. You may consult outside sources, such as textbooks, but any use of any source must be

documented in the assignment solutions.

5. You are permitted to discuss general aspects of the problem sets with other students in the

class, but you must hand in your own copy of the solutions.

6. Your assignment solutions are due by 11:59PM on the due date and must be submitted on

Brightspace.

• Late assignments will be graded with a late penalty of 20% of the full grade per day up

to two days past the deadline.

7. You are responsible for ensuring that your assignment is submitted correctly and without

corruption.

Problem Task 1, P1 Task 1, P2 Task 1, P3 Task 1, P4 Task 2, P1 Task 2, P2 Total

Points 10 10 10 10 10 20 70

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 2 of 7

In this assignment, you will participate in activities related to the operation and use of cryptographic

tools and techniques. This assignment aims to assess your understanding of the basic principles

underlying Public-Key Cryptographic, including topics in Discrete Math, DH Key Exchange Protocol,

RSA, Elliptic Curves and working with Binary Fields.

Submission Requirements

Please read the following instructions very carefully and follow them precisely when submitting your

assignment!

The following items are required for a complete assignment submission:

1. PDF Assignment Report: Submit a detailed report that carefully and concisely describes what

you have done and what you have observed. Include cover page, appropriate code snippets and

listings, as well as screenshots of program outputs and results. You also need to provide an

adequate explanation of the observations that are interesting or surprising. You are encouraged

to pursue further investigation beyond what is required by the assignment description.

2. ZIP Archive of Source Code: In addition to embedding source code listings in your assignment

report, create and submit a ZIP archive of all programs that you write for this assignment. Please

name each of your source code files with the problem number to which they correspond (e.g.,

for Task1 Problem 1, the source code file should be named Task1_Problem1.c). Your source

code must compile and run, producing the desired output. Also, please remember to provide

sufficient comments in your code to describe what it does and why.

Grading Notes

An important part of this assignment is following instructions. As such, the following grade penalties will

be applied for failure to comply with the submission requirements outlined above:

• Failure to submit an Assignment Report will result in a grade of 0 for the assignment.

• Failure to submit the Source Code files will result in deduction of 10% of the full grade of the

assignment.

• Failure of Source Code to compile/run will result in a grade of 0 for the corresponding problem(s).

• Failure to submit any deliverable in the required format (PDF or ZIP) will result in deduction of 5% of

the full grade of the assignment.

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 3 of 7

General Note:
Any command starts with $ should be typed directly into the terminal.

Any command starts with >>> should be typed inside Python.

Task 1 Topics in Discrete Math

Problem 1: Euclidean and Extended Euclidean Algorithms:

A. Write a simple Python code to execute the Euclidean Algorithm.

Use the Euclidean Algorithm to compute the GCD of 91261 and 117035. Let’s denote

this number as 𝐷.

B. Write a simple Python code to execute the Extended Euclidean Algorithm.

Use the Extended Euclidean Algorithm to express the number 𝐷, found in Step A in

terms of the input numbers. In other words, find 𝑎 and 𝑏 such that

 𝑎 × 91261 + 𝑏 × 117035 = 𝐷

C. Use the Extended Euclidean Algorithm to compute the Multiplicative Inverse of the

element ‘171’ in the prime field ℤ271. Write the result as an equation similar to Step B.

D. Write a simple Python code to compute

27350 (mod 569)

E. Use Python math library to confirm correct operation of your code:
>>> import math

>>> math.gcd(91261,117035)

>>> pow(171,-1,271)

>>> pow(27,350,569)

>>> pow(27,350)
Note the difference between running the exponentiation within the modulus, and without

the modulus.

Take screenshot from the two codes and include them in your report, along with screenshots of the

result of executing your code.

Problem 2: Generate large prime numbers:
In this problem, we are going to use the OpenSSL library to generate really large prime

numbers and use OpenSSL as well as Python to check if it is actually prime.

A. Let’s start with generating a small prime number. In the terminal of the SCE VM

machine used in the previous Assignment, type:

$openssl prime -generate -bits 4
This simply means generate a prime number with 4 bits. This should return the number

‘11’ or ‘13’, since these are the only 4-bit numbers that are prime.

B. Generate a large prime number of 2048 bits.

Note that the output is a random prime number with 2048 bits. It is almost impossible for

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 4 of 7

two assignment reports to generate the same prime number.

There are roughly 1.138 × 10613 prime numbers in this range with 2048 bits! For

reference, there are around 1082 atoms in the whole observable universe [link]!

The number of prime numbers less than or equal to 𝑥 is called the Prime-counting

function 𝜋(𝑥) = 𝑥/ ln(𝑥). Hence, we need 𝜋(22048) − 𝜋(22047) = 1.138 × 10613.

C. OpenSSL can itself test if a number is prime:

$ openssl prime 7
Replace the number ‘7’, with the number generated in Step B.

D. In Python, we need the sympy library to test if a number is prime. In order to install this

library, type:

$ python3 -m pip install sympy
Then, type

$ python3
To get inside python

Then,
>>> from sympy import isprime

>>> isprime(7)
Replace the number ‘7’, with the number generated in Step B.

Write down the generated prime number in your report and take screenshot from OpenSSL and

Python output of prime test and include them in your report.

Problem 3: Test a small prime finite field:

In this question, we will study the prime field ℤ19, as a sample toy prime field. Answer the

following questions:

1- Write down the Multiplication tables in ℤ19.

2- List all the generators of ℤ19

You can use Python to simply multiply each element in ℤ19 by each other element and write down

the result in the form of a table.

In order to check if any element is a generator, test

>>> for i in range(1,19):

... if pow(x,i,19)==1:

... print(i);break

While replacing 𝑥 with an element in ℤ19.

If the result is 18, the selected element is a generator, which means 𝑥1 to 𝑥17 generates all the

other elements in the field, and only 𝑥18 brings the element back to 1.

If the result is anything less than 18, the selected element is not a generator. If you selected this

element, all the possible powers of this element will create a subgroup, not the full group. Note

that we expect to have subgroups of sizes {1, 2, 3, 6, 9, 18} since they all devices 𝑝 − 1 = 18.

Take a screenshot from your code and write down the multiplication table and the list of generators.

https://www.livescience.com/how-many-atoms-in-universe.html
https://en.wikipedia.org/wiki/Prime-counting_function
https://en.wikipedia.org/wiki/Prime-counting_function

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 5 of 7

Task 2 RSA

Problem 1: A toy example of unpadded RSA:

Let 𝑝 = 71, 𝑞 = 89, 𝑛 = 𝑝𝑞, the public exponent 𝑒 = 3. Use basic unpadded RSA operations

to find:

A. The private exponent 𝑑.

B. Signature of 𝑚1 = 5016. Signature is the encryption using private exponent, denoted 𝐶1.

C. Signature on 𝑚2 = 2097. Signature is the encryption using private exponent, denoted 𝐶2.

D. Verify correctness of the two signatures are valid by using the public exponent 𝑒 = 3 to

decrypt the messages and bring back the original text.

E. Compute 𝐶3 = 𝐶1 × 𝐶2(mod 𝑛),

This is an encrypted value that is computed based on the two previous ciphertexts. We

didn’t need the private exponent to find this value.

F. Check if 𝐶3 is the actual signature of the message 𝑚1 × 𝑚2 (mod 𝑛)

Report all the values in your report.

Problem 2: RSA using basic commands from OpenSSL and Python:
In this problem, we are going to build an RSA private and public key set by using basic

OpenSSL and Python commands.

A. Use OpenSSL to generate two large prime number of 1024 bits.

$openssl prime -generate -bits 1024
$openssl prime -generate -bits 1024

B. Go inside Python, by typing

$python3
C. Copy the two prime numbers, call them 𝑝, and 𝑞

D. Then,
>>> n = p*q

>>> phi = (p-1)*(q-1)

>>> e = 65537

>>> d = pow(e,-1,phi)
E. Confirm that 𝑝 and 𝑞 are each of 1024 bits,

Confirm that 𝑛 is of 2048 bits, which is the currently recommended value of the RSA

modulus.

Confirm that indeed

>>> (e*d)%phi

equals to 1.

F. Use 𝑚 as any random number less than 𝑛.

G. Encrypt m using the private exponent (𝑑) to generate a signature, then decrypt it using the

public exponent (𝑒), check if you bring back the same message.
>>> pow(m,d,n)

>>> pow(_,e,n)

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 6 of 7

Once again, note that there are an estimated 𝜋(21024) − 𝜋(21024) = 1.265 × 10305 prime

numbers with 1024 bits. Since 𝑛 = 𝑝 × 𝑞, where 𝑝 and 𝑞 can take any random value out of the

1.265 × 10305 possible values, there are an estimated 1.6 × 10610 possible values for the RSA

public modulus 𝑛 of 2048 bits.

Include screenshots of all the generated values.

Problem 3: RSA using OpenSSL:
Type in

$openssl genrsa 2048

This will generate an RSA key pair, with an 𝑛 modulus of 2048 bits, and a public exponent 𝑒 of

65537.

Note that the generated result, starting with:

and ending with

Is a PEM-encoded data structure that contains the 𝑝, 𝑞, 𝑛, 𝑑 and some hash values for check.

You can decode it using https://8gwifi.org/PemParserFunctions.jsp

Needless to say, once a private key is uploaded online, it is no longer valid for any transaction.

The website now has a copy for this key pair.

Include screenshots of all the generated values.

Problem 4: Study a publicly available RSA key pair:
$GET https://appleid.apple.com/auth/keys

This will bring back some of the currently used public keys of Apple Inc. Note that the public

key includes only 𝑒 and 𝑛.

Include screenshots of all the generated values.

https://8gwifi.org/PemParserFunctions.jsp

SYSC 4810B – Module 3 Assignment Due: November 13, 2022

Page 7 of 7

Task 3 Elliptic Curves

Problem 1: A toy example of Elliptic Curves:
In this question, we will study Curve-Cryptography over Edward Curves. The curve is defined

as:

𝑥2 + 𝑦2 = 1 + 𝑑 · 𝑥2 · 𝑦2

Then, the addition of two points 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) is defined as:

,

For (𝑑 = −20), and all the coordinates are computed in ℤ17, i.e., the 𝑥 and 𝑦 coordinates of any

point can only take an integer value 0 ≤ 𝑥, 𝑦 ≤ 16.

Find the following:

A. List all the valid points on the curve.

B. Write down the addition table.

C. Identify all the points that can serve as a base point (generator) for this field.

Select any generator at random as a starting point on the curve, compute a point that represents

the shared secret key of a simplified communication protocol using these parameters for the

Edward-Curve Diffie-Hellman Key Exchange (𝑑 = −20 and 𝑝 = 17) when Alice selects 𝑥 =

8 and Bob selects 𝑦 = 11.

Problem 2: Elliptic Curves using OpenSSL:
In this last problem, we are going to use OpenSSL to generate Elliptic Curve key pair.

A. Type:

$openssl ecparam -list_curves
to understand the set of curves supported by OpenSSL.

B. We are going to use the prime256v1 curve, which is one of the popular curves. Type:

$openssl ecparam -name prime256v1 -genkey -noout -out private-key.pem
to set the EC-parameters to use curve named prime256v1, and generate key to be stored

in the output file named private-key.pem.

Check contents of the private-key.pem file using vi or any text editor. You can

understand the content of this PEM-encoded file using

https://8gwifi.org/PemParserFunctions.jsp

Needless to say, once a private key is uploaded online, it is no longer valid for any

transaction. The website now has a copy for this key pair.

C. Generate corresponding public key by typing:

$openssl ec -in private-key.pem -pubout -out public-key.pem

Include screenshots of all the generated values.

************This is the end of Assignment 3************

https://8gwifi.org/PemParserFunctions.jsp

