
Cardiff School of Computer Science and Informatics

Coursework Assessment Pro-forma

Module Code: CM1210

Module Title: Object Oriented Java Programming

Lecturer: Neetesh Saxena and Surya Thottam Valappil

Assessment Title: Data Structures and Algorithms in Java

Assessment Number: 2

Date Set: 25th March 2022

Submission Date and Time: 13th May 2022 at 9:30am

Return Date: 10th June 2022

This assignment is worth 50% of the total marks available for this module. If coursework

is submitted late (and where there are no extenuating circumstances):

1 If the assessment is submitted no later than 24 hours after the deadline, the

mark for the assessment will be capped at the minimum pass mark;

2 If the assessment is submitted more than 24 hours after the deadline, a mark

of 0 will be given for the assessment.

Your submission must include the official Coursework Submission Cover sheet, which

can be found here: https://docs.cs.cf.ac.uk/downloads/coursework/Coversheet.pdf

https://docs.cs.cf.ac.uk/downloads/coursework/Coversheet.pdf

Submission Instructions

You must submit to Learning Central three files, the name of which must commence

with your user name, as indicated in the table below:

Description Type Name

Cover sheet Compulsory One PDF

(.pdf) file

[student number].pdf

e.g., c1234567.pdf

ONE ZIP file (and no more than one) of all the source

code written

Compulsory One ZIP (.zip)

archive

[student number]_CW2.zip

e.g., c1234567_CW2.zip

ONE PDF file (and no more than one) which contains a

written justification for your design of the program and

screen shots showing an example of the output of each

application.

Compulsory One PDF

(.pdf) file

[student number]_CW2.pdf

e.g., c1234567_CW2.pdf

• Ensure that your student number is included as a comment at the top of each

Java file that makes up your submission.

• Any code submitted will be run on a system equivalent to those available in the

Windows laboratory and must be submitted as stipulated in the instructions

above.

• Any deviation from the submission instructions above (including the number and

types of files submitted) will result in a reduction in marks for that question part of

20%.

• Multiple attempts on the coursework submission is permitted via Learning Central

but only the last attempt will be marked.

• You are reminded of the need to comply with Cardiff University’s Student Guide

to Academic Integrity. If you use external resources (even Oracle guidance), they

need to be properly referenced, eg. as in-line comments in your code. If unfair

practice is suspected, it will be necessary to invoke the University’s Unfair

Practice procedure.

Staff reserve the right to invite students to a meeting to discuss coursework

submissions

Assignment

[Total: 100 marks]

All code must be written by you, although you can use the lecture notes (and lab

exercises), textbooks, and the Oracle Java website for guidance.

(1) Stop words are high-frequency words that are removed from the representation of

natural language data. Write a method deleteStopwords(input, stopwords) that

deletes a list of words stopwords from some text input. It is up to you whether your

method expects input to be a referring to the source of the text to be processed, or a

String or ArrayList of words; similarly, for the stopwords parameter. However, you

should try to optimise the data structure used. Your method should return an ArrayList

containing the non-stop words identified. Your method should work successfully with

the contents of the input file Input.txt and the stop words listed in the file

stopwords.txt (both files are available on Learning Central).

[15 marks]

(Functionality: 8, Design: 4, Ease of use: 2, Presentation: 1)

(2) Implement the insertion sort algorithm to sort the words obtained from Question (1)

in alphabetical order (the pseudocode for this method is available in the lecture

notes). The Java method for insertion sort should be named

insertionSort(listofWords).

[15 marks]

(Functionality: 7, Design: 4, Ease of use: 2, Presentation: 2)

(3) Implement the merge sort algorithm to sort the words obtained from Question (1)

above in alphabetical order (the pseudocode for this method is available in the lecture

notes). The Java method for merge sort should be named mergeSort(listofWords).

[20 marks]

(Functionality: 10, Design: 5, Ease of use: 3, Presentation: 2)

(4) Write a Java method to measure the performance of the insertion sort and merge sort

Java methods from Questions (2) and (3), respectively, by:

• Measuring time that is needed to sort the first 100 of the words, first 200 of the

words, and first 500 of the words by each of the two algorithms.

• Counting the moves and/or swaps that occur while sorting elements.

(Before attempting this exercise, you should work through the Algorithms lab

exercises, available on Learning Central. The techniques used there will help you to

work out how to approach this part of the coursework, in particular there are examples

on how to time algorithms and count the moves and swaps.)

[20 marks]

(Functionality: 10, Design: 5, Ease of use: 3, Presentation: 2)

(5) You should create two methods for a data structure implementing a Queue as a

circular array. Your data structure should have the class name MyArrayQueue. The

two methods that should be implemented are:

a) Adding element to the queue:

public void enqueue(Object theElement) {…}

[20 marks]

(Functionality: 15, Design: 2, Ease of use: 2, Presentation: 1)

b) Deleting an element from the queue and return the deleted element:

public Object dequeue() {…}

[10 marks]

(Functionality: 6, Design: 2, Ease of use: 1, Presentation: 1)

In both methods errors should be handled properly. For example what happens

when adding an element to a full queue?

There will be skeleton code for MyArrayQueue available on Learning central that

contains the MyArrayQueue class with the following fully implemented methods:

constructor, isEmpty(), getFrontElement(), getRearElement() methods. It also

includes signatures of two methods that you should implement: enqueue(Object

theElement) & dequeue().

You can reuse any implemented methods in the provided skeleton code. You ARE

NOT allowed to change any parts of the implemented methods of the provided

code.

You should also submit a pdf file with no more than 800 words that has written

justification for your design of the program reflecting on the algorithm and efficiency

of the all the codes in your assessment. It should also contain screenshots showing

an example of the output of each question.

Learning Outcomes Assessed

• Implement basic data structures and algorithms

• Analyse and describe the performance of data-structures and algorithms

Code Reuse

Your solutions may make use of any classes in the Core Java API. You may also

reproduce small pieces of code from:

• The CM1210 course handouts and solutions

• java.oracle.com

• any textbooks

provided:

• The section reproduced does not form the entire solution to a single question

• The source of the code is clearly referenced in your source code

• Your code is commented to demonstrate clearly that you understand how the

reproduced code works (i.e., explain why particular types have been selected,

why other language features have been used, etc.)

You may NOT reproduce code written by any other student or code downloaded from

any other website.

If you are in any doubt about whether you may include a piece of code that you have

not written yourself, ask the lecturer before submitting.

See “Referencing in code guidance” at Learning Central → COMSC-SCHOOL

→ Learning Materials → Referencing in code guidance.

Criteria for assessment

Credit will be awarded against the following criteria.

Marks Functionality Design Ease of use

Documentation &
Presentation

1st (70-100%)

Fully working code
that demonstrates
an excellent
understanding of the
assignment
problem using a
relevant java
approach

Excellent design with
proper use of
appropriate types,
program control
structures and classes
from the core API and
carefully considers the
use of most suitable
data structures and
aiming for optimised
algorithms in terms of
efficiency

An excellent use of
input/output
formatting that
allows interaction
with users and
appropriate use of
error handling for
invalid input

Excellent use of in line
comments in the code
and proper justification
given with clear and
appropriate screenshots

2:1 (60-
69%)

All required
functionality is met,
and the code is
working probably
with some minor
errors

A good design with
use of classes, types
and control structure.
The data structure is
implemented
appropriately.

A good use of
input/output
formatting with
some minor issues
in handling invalid
input (no error
message
displayed)

Good use of in line
comments in the code
and screenshots
submitted but justification
for the design needs
improvement

2:2 (50-
59%)

Some of the
functionality
developed with
incorrect output and
minor errors

Some classes and
types have been
implemented with very
little focus on
efficiency of algorithm

Formatted
input/output is
implemented but
minor issues in
handling invalid
input (accepts
invalid input)

in line comments are not
appropriate but
screenshots submitted
and justification for the
design is just acceptable

3rd /Pass (40-
49%)

Some of the
functionality
developed with
incorrect output and
major errors

Some classes and
types have been
implemented with no
attention to efficiency
in algorithm

Formatted
input/output is
implemented but
code crashes for
an invalid input

in line comments are not
appropriate and no
screenshots submitted
and justification for the
design is not acceptable

Fail (<40%) Faulty function with
wrong
implementation and
wrong output

Poor design with
incomplete classes
and data structures
used

Poor formatting of
input and output;
no expected
outcome

Poor/no comments,
poor/no screenshot
submitted, no justification
of design

Feedback and suggestion for future learning
Feedback on your coursework will address the above criteria. Feedback and marks will be

returned on 10th June 2022 via Learning Central.

