Cardiff School of Computer Science and Informatics
Coursework Assessment Pro-forma

Module Code: CM1210

Module Title: Object Oriented Java Programming
Lecturer: Neetesh Saxena and Surya Thottam Valappil
Assessment Title: Data Structures and Algorithms in Java
Assessment Number: 2

Date Set: 251 March 2022

Submission Date and Time: 13t May 2022 at 9:30am

Return Date: 10t June 2022

This assignment is worth 50% of the total marks available for this module. If coursework
is submitted late (and where there are no extenuating circumstances):

1 If the assessment is submitted no later than 24 hours after the deadline, the
mark for the assessment will be capped at the minimum pass mark;

2 If the assessment is submitted more than 24 hours after the deadline, a mark
of O will be given for the assessment.

Your submission must include the official Coursework Submission Cover sheet, which
can be found here: https://docs.cs.cf.ac.uk/downloads/coursework/Coversheet.pdf



https://docs.cs.cf.ac.uk/downloads/coursework/Coversheet.pdf

Submission Instructions

You must submit to Learning Central three files, the name of which must commence

with your user name, as indicated in the table below:

Description Type Name
Cover sheet Compulsory One PDF [student number].pdf

(-pdf) file e.g., c1234567.pdf
ONE ZIP file (and no more than one) of all the source Compulsory One ZIP (.zip) | [student number]_CW?2.zip
code written archive e.g., c1234567_CW2.zip
ONE PDF file (and no more than one) which contains a Compulsory One PDF [student number]_CW2.pdf
written justification for your design of the program and (.pdf) file e.g., c1234567_CW2.pdf
screen shots showing an example of the output of each -
application.

e Ensure that your student number is included as a comment at the top of each
Java file that makes up your submission.
e Any code submitted will be run on a system equivalent to those available in the
Windows laboratory and must be submitted as stipulated in the instructions

above.

Any deviation from the submission instructions above (including the number and
types of files submitted) will result in a reduction in marks for that question part of
20%.

Multiple attempts on the coursework submission is permitted via Learning Central
but only the last attempt will be marked.

You are reminded of the need to comply with Cardiff University’s Student Guide
to Academic Integrity. If you use external resources (even Oracle guidance), they
need to be properly referenced, eg. as in-line comments in your code. If unfair
practice is suspected, it will be necessary to invoke the University’s Unfair
Practice procedure.

Staff reserve the right to invite students to a meeting to discuss coursework
submissions




Assignment
[Total: 100 marks]

All code must be written by you, although you can use the lecture notes (and lab
exercises), textbooks, and the Oracle Java website for guidance.

(1) Stop words are high-frequency words that are removed from the representation of
natural language data. Write a method deleteStopwords(input, stopwords) that
deletes a list of words stopwords from some text input. It is up to you whether your
method expects input to be a referring to the source of the text to be processed, or a
String or ArrayList of words; similarly, for the stopwords parameter. However, you
should try to optimise the data structure used. Your method should return an ArrayList
containing the non-stop words identified. Your method should work successfully with
the contents of the input file Input.txt and the stop words listed in the file
stopwords.txt (both files are available on Learning Central).

[15 marks]

(Functionality: 8, Design: 4, Ease of use: 2, Presentation: 1)

(2) Implement the insertion sort algorithm to sort the words obtained from Question (1)
in alphabetical order (the pseudocode for this method is available in the lecture
notes). The Java method for insertion sort should be named
insertionSort(listofWords).

[15 marks]

(Functionality: 7, Design: 4, Ease of use: 2, Presentation: 2)

(3) Implement the merge sort algorithm to sort the words obtained from Question (1)
above in alphabetical order (the pseudocode for this method is available in the lecture
notes). The Java method for merge sort should be named mergeSort(listofWords).

[20 marks]

(Functionality: 10, Design: 5, Ease of use: 3, Presentation: 2)

(4) Write a Java method to measure the performance of the insertion sort and merge sort
Java methods from Questions (2) and (3), respectively, by:



e Measuring time that is needed to sort the first 100 of the words, first 200 of the
words, and first 500 of the words by each of the two algorithms.
e Counting the moves and/or swaps that occur while sorting elements.

(Before attempting this exercise, you should work through the Algorithms lab
exercises, available on Learning Central. The techniques used there will help you to
work out how to approach this part of the coursework, in particular there are examples
on how to time algorithms and count the moves and swaps.)

[20 marks]
(Functionality: 10, Design: 5, Ease of use: 3, Presentation: 2)

(5) You should create two methods for a data structure implementing a Queue as a
circular array. Your data structure should have the class name MyArrayQueue. The
two methods that should be implemented are:

a) Adding element to the queue:
public void enqueue(Object theElement) {...}
[20 marks]
(Functionality: 15, Design: 2, Ease of use: 2, Presentation: 1)
b) Deleting an element from the queue and return the deleted element:
public Object dequeue() {...}
[10 marks]
(Functionality: 6, Design: 2, Ease of use: 1, Presentation: 1)

In both methods errors should be handled properly. For example what happens
when adding an element to a full queue?

There will be skeleton code for MyArrayQueue available on Learning central that
contains the MyArrayQueue class with the following fully implemented methods:
constructor, isEmpty(), getFrontElement(), getRearElement() methods. It also
includes signatures of two methods that you should implement: enqueue(Object
theElement) & dequeue().

You can reuse any implemented methods in the provided skeleton code. You ARE
NOT allowed to change any parts of the implemented methods of the provided
code.

You should also submit a pdf file with no more than 800 words that has written
justification for your design of the program reflecting on the algorithm and efficiency
of the all the codes in your assessment. It should also contain screenshots showing
an example of the output of each question.



Learning Outcomes Assessed

¢ Implement basic data structures and algorithms
¢ Analyse and describe the performance of data-structures and algorithms

Code Reuse
Your solutions may make use of any classes in the Core Java API. You may also
reproduce small pieces of code from:

e The CM1210 course handouts and solutions
e java.oracle.com
e any textbooks

provided:

e The section reproduced does not form the entire solution to a single question

e The source of the code is clearly referenced in your source code

e Your code is commented to demonstrate clearly that you understand how the
reproduced code works (i.e., explain why particular types have been selected,
why other language features have been used, etc.)

You may NOT reproduce code written by any other student or code downloaded from
any other website.

If you are in any doubt about whether you may include a piece of code that you have
not written yourself, ask the lecturer before submitting.

See “Referencing in code guidance” at Learning Central > COMSC-SCHOOL
- Learning Materials - Referencing in code guidance.



Criteria for assessment

Credit will be awarded against the following criteria.

Marks

Functionality

Design

Ease of use

Documentation &
Presentation

15t (70-100%)

Fully working code
that demonstrates
an excellent
understanding of the
assignment

problem using a
relevant java
approach

Excellent design with
proper use of
appropriate types,
program control
structures and classes
from the core API and
carefully considers the
use of most suitable
data structures and
aiming for optimised
algorithms in terms of
efficiency

An excellent use of
input/output
formatting that
allows interaction
with users and
appropriate use of
error handling for
invalid input

Excellent use of in line
comments in the code
and proper justification
given with clear and
appropriate screenshots

All required
functionality is met,
and the code is

A good design with
use of classes, types
and control structure.

A good use of
input/output
formatting with

Good use of in line
comments in the code
and screenshots

2:1 (60- working probably The data structure is some minor issues | submitted but justification
69%) with some minor implemented in handling invalid | for the design needs
errors appropriately. input (no error improvement
message
displayed)
Some of the Some classes and Formatted in line comments are not
functionality types have been input/output is appropriate but
2:2 (50- developed with implemented with very | implemented but screenshots submitted
59%) incorrect output and | little focus on minor issues in and justification for the

minor errors

efficiency of algorithm

handling invalid
input (accepts
invalid input)

design is just acceptable

3" /Pass (40-
49%)

Some of the
functionality
developed with
incorrect output and
major errors

Some classes and
types have been
implemented with no
attention to efficiency
in algorithm

Formatted
input/output is
implemented but
code crashes for
an invalid input

in line comments are not
appropriate and no
screenshots submitted
and justification for the
design is not acceptable

Fail (<40%)

Faulty function with
wrong
implementation and
wrong output

Poor design with
incomplete classes
and data structures
used

Poor formatting of
input and output;
no expected
outcome

Poor/no comments,
poor/no screenshot
submitted, no justification
of design

Feedback and suggestion for future learning

Feedback on your coursework will address the above criteria. Feedback and marks will be
returned on 10" June 2022 via Learning Central.




