MONASH
University

2020 Semester Two (November-December 2020)
Examination Period

Faculty of Information Technology

EXAM CODES: FIT1008-FIT2085

TITLE OF PAPER: Intro to comp science

EXAM DURATION: 3 hours 10 mins
ules

Juring an exam, you must not have in your possession any item/material that has not been authorised for your exam. This includes books,
10tes, paper, electronic device/s, mobile phone, smart watch/device, calculator, pencil case, or writing on any part of your body. Any
wthorised items are listed below. ltems/materials on your desk, chair, in your clothing or otherwise on your person will be deemed to be in
four possession.

fou must not retain, copy, memorise or note down any exam content for personal use or to share with any other person by any means
‘ollowing your exam.

fou must comply with any instructions given to you by an exam supervisor.

As a student, and under Monash University’'s Student Academic Integrity procedure, you must undertake your in-semester tasks, and end-
f-semester tasks, including exams, with honesty and integrity. In exams, you must not allow anyone else to do work for you and you must
10t do any work for others. You must not contact, or attempt to contact, another person in an attempt to gain unfair advantage during your
:xam session. Assessors may take reasonable steps to check that your work displays the expected standards of academic integrity.

-ailure to comply with the above instructions, or attempting to cheat or cheating in an exam may constitute a breach of instructions under
‘egulation 23 of the Monash University (Academic Board) Regulations or may constitute an act of academic misconduct under Part 7 of the
vionash University (Council) Regulations.

Authorised Materials

OPEN BOOK () YES NO
CALCULATORS () YES NO
DICTIONARIES () YES NO
NOTES () YES NO
SPECIFICALLY PERMITTED ITEMS () YES NO

if yes, items permitted are:

Page 1 of 17

nstructions

Marks

rhere are 100 marks in this exam. The exam is worth 60% of the unit mark.
MIPS code:

¢ All translations from Python to MIPS must be faithful.
e Only the instructions in the MIPS reference sheet (in appendix) are allowed.
e The conventions given in the MIPS reference sheet must be followed.

dython code:

¢ Unless otherwise specified, do not write type hinting, documentation, assertions or exceptions.
e Write comments if necessary for understanding the code.

complexity:

¢ By default, "runtime complexity” refers to worst-case runtime complexity, which we ask you to express using the O() notation.

Page 2 of 17

Instructions

Information

Marks
There are 100 marks in this exam. The exam is worth 60% of the unit mark.

MIPS code:

o All translations from Python to MIPS must be faithful.
e Only the instructions in the MIPS reference sheet (in appendix) are allowed.
e The conventions given in the MIPS reference sheet must be followed.

Python code:

e Unless otherwise specified, do not write type hinting, documentation, assertions or exceptions.
e Write comments if necessary for understanding the code.

Complexity:

e By default, "runtime complexity" refers to worst-case runtime complexity, which we ask you to
express using the O() notation.

Page 3 of 17

Implementations of the Set ADT

Information

We consider the Set ADT studied in the workshop:

(.DCO\IO)O‘I-POONH|

class Set(ABC, Generic[T]):
""" Abstract class for a generic Set. """

def __init__ (self) -> None:
""" Initialization. """
self.clear()

@abstractmethod

def _ len_ (self) -> int:
""" Returns the number of elements in the set. """
pass

@abstractmethod

def is_empty(self) -> bool:
""" True if the set is empty. """
pass

@abstractmethod

def clear(self) -> None:
""" Makes the set empty. """
pass

@abstractmethod

def _ contains__ (self, item: T) -> bool:
""" True if the set contains the item. """
pass

@abstractmethod
def add(self, item: T) -> None:
""" Adds an element to the set. Note that an element
already
present in the set should not be added.

pass

@abstractmethod

def remove(self, item: T) -> None:
""" Removes an element from the set. An exception should be
raised if the element to remove is not present in the set.

pass

We are interested in two different implementations of this ADT and their complexities.

Question 1

Suppose that we use an implementation of the Set ADT based on alinked list (which is not ordered).
Give the runtime complexities of each of the class methods of Set for this implementation. No

explanation, no marks.

Marks

Page 4 of 17

Question 2
Suppose that we use an implementation of the Set ADT based on anordered array, which means that

the internal array is kept ordered at all times: 0
Marks
lllclass ASet(Set[T]):
2 """Implementation of the set ADT using an ordered array.
3
4 Attributes:
5 size (int): number of elements in the set
6 array (ArrayR[T]): array storing the elements of the set
7
8 ArrayR cannot create empty arrays. So default capacity value 1
9 is used to avoid this.
10 mmnn
11
12 def _ init_ (self, capacity: int = 1) -> None:
13 """ Initialization. """
14 Set.__init_ (self)
15 self.array = ArrayR(max(1, capacity))

Give the runtime complexities of each of the class methods of Set for this implementation. No
explanation, no marks.

Page 5 of 17

Hash Tables
Question 3

Consider a hash table of size tablesize=11, with the hash function:

hash(key) = key % tablesize Marks

Starting from an empty hash table, the keys11,9, 7, 63, 13, 40, 33, 5, 39, 50are inserted in the table in
that order. Using Linear Probing as the method of collision resolution, and the hash function shown
above, write the content of the hash table as a list. Separate the keys using commas and denote an
empty slot using quotation marks ("), for instance [x, ", v, ...]. You must also explain each insertion
step by step. No explanation, no marks.

Page 6 of 17

Sorting
Question 4

Describe Selection Sort in a few sentences. How can we make Selection Sort stable? Give a precise

description. How does this affect the worst-case runtime complexity? Give a proof. No proof, no e

marks. Marks

Question 5
Describe Quicksort in a few sentences. What is the best and worst case runtime complexity of e

Quicksort? Give a proof of both of these. No proof, no marks.
Marks

Page 7 of 17

Heaps
Question 6

What are the advantages and disadvantages, if any, of an implementation of a heap that uses an array,

rather than a binary tree made of linked nodes?

Question 7

Consider the partial implementation of a max heap, as seen in the lessons:

from typing import Generic
from referential array import ArrayR, T

class Heap(Generic[T]):
MIN_CAPACITY = 1

def _ _init_ (self, max_size: int) -> None:
self.length = 0

=
(D‘.DCO\IO’UI-PO)NI—‘\

1)

[y
N R

def _ len_ (self) -> int:
return self.length

=
w

I

self.the_array = ArrayR(max(self.MIN_CAPACITY, max_size) +

Write a recursive method called postorder_list() inside the Heap class above that returns a list of the
content of the heap binary tree in postorder traversal. Recall that in a postoder traversal of a binary

tree,

e First, the left subtree is traversed recursively in postorder
e Second, the right subtree is traversed recursively in postorder

e Third, the current node is processed (in our case, this simply means that the value at the node is

printed).

For example, it will return [2, 10, 15, 4, 5, 20] for the following Heap instance:

Marks

Marks

Page 8 of 17

lterators
Question 8

Write an iterator to generate the Fibonacci sequence. Recall that the Fibonacci sequence is

1,1,2,3,5,8,13,21, ... e
Marks

Use the template:

class FibIterator:
def __init_ (self) -> None:

def _ iter_ (self) ->
FibIterator:

OO hs WNBE

def _ next_ (self) -> T:

Page 9 of 17

Scoping
Question 9

In this question you are tasked to determine what is printed by a code. Eachprint instruction prints a
Python variable that refers to a function. For example, the code

Marks

class Mystery:
def f(self):
print(f)

f = Mystery()
f.f()

O Ohs WNBE

prints 1 Python object, which is the function defined at line 2 (remember that in Python, functions are
objects!). For the code below, write which functions (referring to them by the line at which they are
defined) are printed, in the correct order. Justify each answer. No justification, no mark.

[1lclass Mystery:
2 def f(self):
3 def g():
4 print(f)
5 def h():
6 def f():
7 print(f)
8 O
9 g()
10 h()
11
12|f = Mystery()
13|f.f()

Page 10 of 17

Stack ADT and sorting
Question 10

The problem consists in sorting a stack with the help of an auxiliary stack, and no other container.

Recall that the ADT of a Stack is: e
Marks

1l/class StackADT(ABC, Generic[T]):

2 def __init_ (self) -> None:

3 self.length = 0

4

5 @abstractmethod

6 def push(self, item: T) -> None:

7 """ Pushes an element to the top of the stack."""

8 pass

9

10 @abstractmethod

11 def pop(self) -> T:

12 """ Pops an element from the top of the stack."""
13 pass

14

15 @abstractmethod

16 def peek(self) -> T:

17 """ pops the element at the top of the stack."""

18 pass

19
20 def _ _len_ (self) -> int:
21 """ Returns the number of elements in the stack."""
22 return self.length
23
24 def is_empty(self) -> bool:
25 """ True if the stack is empty. """

26 return len(self) ==

27

28 @abstractmethod

29 def is_full(self) -> bool:

30 """ True if the stack is full and no element can be pushed. """
31 pass

32

33 def clear(self):

34 """ Clears all elements from the stack. """

35 self.length = 0

Given one input stack and one temporary stack, write a Python program that sorts the input stack,
using the temporary stack (no other containers) and without calling Python's sorting methods in any
way. Comment your code. For reference, there is a solution that has fewer than 12 lines (excluding
comments).

Page 11 of 17

The Bisection Algorithm

Information

We now attempt to answer a few questions related to the bisection method for finding the square root
of a number x, which we denote x%. We provide the description of the recursive version of this
algorithm here.

The input of this algorithm is:

e X, a real number >= 0 that we must find the root of.

e |, alower bound on x%, i.e. | <= x%. Also | >= 0.

e U, an upper bound on x%, i.e. x% <= u. Also | <= u.

e e, a numerical tolerance, i.e. the output y of the algorithm should satisfy |y-x'2| <= e.

The bisection algorithm relies on the assumption that the root that we are looking for, x%, is in the
interval [l, u] at the start of the algorithm. It recursively divides the interval by 2, and selects the half in
which x% is located by adjusting the values of | and u, until the interval is small enough to satisfy |u-I|
<=e, at which point u can be output with the guarantee that [u-x| <= e.

A Python implementation of the bisection algorithm that uses recursion to compute x% is:

1def bisection_rec(x, 1, u, e):

2 # base case

3 ifu - 1<=e:

4 return u

5

6 # compute the middle point of the interval [1,u]
7 m = (u+l)/2

8 # compute its square

9 s = m*m

10

11 # check how to divide the interval
12 if s >= x:

13 u=m

14 else:

15 l=m

16

17 # recurse

18 return bisection_rec(x, 1, u, e)

Make sure that you understand this algorithm as it will be used in a few questions. The questions
are independent of each other and can be attempted in any order.

Examples of calls and returned values are given below:
bisection_rec(2, 0, 2, 0.0001) -> 1.41424560546875
bisection_rec(2, 0,2, 0.1) -> 1.4375

bisection_rec(4.0, 0, 4.0, 0.0001) -> 2.0

Page 12 of 17

Question 11

The Python code we have provided does not have type hinting, documentation or assertions (in this
question we ignore exceptions). We provide the original code again for convenience:

Marks

1def bisection_rec(x, 1, u, e):

2 # base case

3 if u - 1 <= e:

4 return u

5

6 # compute the middle point of the interval [1,u]
7 m = (u+l)/2

8 # compute its square

9 s = m*m

10

11 # check how to divide the interval
12 if s >= x:

13 u=m

14 else:

15 l=m

16

17 # recurse

18 return bisection_rec(x, 1, u, e)

Based on the description of the algorithm and the code itself, addtype hinting, documentation
(description, pre- and post-conditions) and assertions to match. Do not add exceptions, but for the
purpose of this question add assertions where you may normally add an exception.

Question 12

Extend the function we have provided to handle an extra argument n and to compute and return the
n“th root of x (rather than the square root). We provide the original code again for convenience:

Marks

1def bisection_rec(x, 1, u, e):

2 # base case

3 if u - 1 <= e:

4 return u

5

6 # compute the middle point of the interval [1,u]
7 m = (u+l)/2

8 # compute its square

9 s = m*m

10

11 # check how to divide the interval
12 if s >= x:

13 u=m

14 else:

15 1=m

16

17 # recurse

18 return bisection_rec(x, 1, u, e)

Page 13 of 17

Question 13

In this question we want to determine the runtime complexity of the bisection algorithm. We provide

the original code again for convenience:

Marks

1def bisection_rec(x, 1, u, e):

2 # base case

3 if u - 1 <= e:

4 return u

5

6 # compute the middle point of the interval [1,u]
7 m = (u+tl)/2

8 # compute its square

9 s = m*m

10

11 # check how to divide the interval
12 if s >= x:

13 u=m

14 else:

15 l=m

16

17 # recurse

18 return bisection_rec(x, 1, u, e)

We denote L = (u - I) the length of the search interval and N = L/e the number of intervals

corresponding to the base case.

Express the worst-case runtime complexity of this algorithm as a function of N. Justify your answer.

Question 14

In this question we ask that you write the iterative version of the recursive bisection. We provide the

original code again for convenience:

Marks

1def bisection_rec(x, 1, u, e):

2 # base case

3 ifu - 1<=e:

4 return u

5

6 # compute the middle point of the interval [1,u]
7 m = (u+l)/2

8 # compute its square

9 s = m*m

10

11 # check how to divide the interval
12 if s >= x:

13 u=m

14 else:

15 l=m

16

17 # recurse

18 return bisection_rec(x, 1, u, e)

Give a direct translation using the template provided.

Page 14 of 17

Question 15
Faithfully translate into MIPS the (modified) bisection function. Do not translate the body of the

original function. Only translate the code below: @
Marks
1def bisection_rec(x, 1, u, e):
; #the body is empty. Nothing to translate
4here.
: # recurse
return bisection_rec(x, 1, u, e)

Recall that in MIPS, a recursive call can be translated as any other function call Start the translation
with a stack diagram written as comments at the point of line 3's execution (the translation assumes
no body). The clarity of the MIPS code you write will be assessed together with its correctness and
faithfulness.

Page 15 of 17

Appendix

Information

MIPS reference sheet for FIT1008 and FIT2085

Table 1: System calls

Call code | Service Arguments Heturns Notes
(Bv0)
1 Print integer $a0 = value to print - value 1s signed
1 Print string $a0 = address of string to print | - string must be termi-
nated with *40?
[Input integer - $v0 = entered integer value 1s signed
] Input string $a0 = address at which the returns it $al-1 char-
string will be stored acters or Enter typed,
$al = maximum number of the string is termi-
characters in the string nated with *\0?
9 Allocate memory | $a0 = number of bytes $v0 = address of first byte | -
10 Exat - - ends simulation
Table 2: General-purpose registers
Number Name Purpose
ROO $zero provides constant zero
RO1 $at reserved for assembler
RO2, RO3 | $v0, $vi | system call code, return value
RO4-RO7 | $2a0--%$a3 | system call and function arguments
ROS-R15 | $t0—-$t7 | temporary storage (caller-saved)
R16-R23 | $s0--$s7 | temporary storage (callee-saved)
R24, R25 | $t8, $t9 | temporary storage (caller-saved)
R28 $ezp pointer to global area
R20 $=p stack pointer
R30 $fp frame pointer
R31 $ra return address
Tahble 3: Assembler directives
data assemble nto data segment
text assemnble into text (code) segment

Space 1
.ascii "string”
.asciiz "string”

word wi], w2, ..

| allocate word(s) with initial value(s)
allocate n bytes of uninitialized, unaligned space
allocate ASCII string, do not terminate
allocate ASCII string, terminate with *\0°

Table 4: Function calling convention

Caller:

Callee:

On function call:

Omn function return:

saves temporary registers on stack
passes arguments on stack
calls function using jal fn label

saves value of $ra on stack
saves value of $fp on stack
copies $sp to $fp

allocates local variables on stack

Callee:

sets $v0 to return value
clears local variables off stack
restores saved $fp off stack
restores saved $ra off stack
returns to caller with jr $ra

Caller:

clears arguments off stack

restores temporary registers off stack
uses return value in $v0

Page 16 of 17

Table 5: A partial instruction set is provided below. The following conventions apply.

Instruction Format column

label: label of an instruection
#*. pseudoinstruction
Immediate Form column

Unsigned or overflow column

Rsre, Rsrel, Rsre2: register source operand(s) - must be the name of a register
Rdest: register destination - must be the name of a register
Addr: address in the form offset (Rsrc), that is, absolute address = Rsrc + offset

Associated instruction where Rsre2 is an immediate. Symbol - appears if there is no immediate form.

Associated unsigned (or overflow) instruetion for the values of Rsrel and Rsre2. Symbol - if no such form.

Table 6: Allowed MIPS instruction (and pseudoinstruction) set

Instruction format Meaning Operation Immediate | Unsigned or Overflow
add Rdest, Rsrel, Rsre2 Add Rdest = Rsrel + Rsre2 addi addu (no overflow trap)
sub Rdest, Rsrel, Rsre2 Subtract Rdest = Rsrel - Rsre2 - subu (no overflow trap)
mult Rsrel, Rsre2 Multiply Hi:Lo = Rsrel * Rsre2 - mulu
div Rsrel, Rsre2 Divide Lo = Rsrel /Rsre?; - diva
Hi = Rsrel % Rere2
and Rdest, Rsrel, Rsre2 Bitwise AND Rdest = Rsrel & Rsre2 andi -
or Rdest, Rsrel, Rsre2 Bitwise OR Rdest = Rsrel | Rsre2 ori -
xor Rdest, Rsrel, Rsre2 Bitwise XOR Rdest = Rsrel A Rsre2 xori -
nor Rdest, Rsrel, Rsre2 Bitwise NOR Rdest = ~(Rsrel | Rsre2) - -
sllv Rdest, Rsrel, Rsre2 Shift Left Logical Rdest = Rsrel << Rsre2 sll -
srlv Rdest, Rsrel, Rsre2 Shift Right Logical Rdest = Rsrel > Rsre2 srl -
(MSB=0)
srav Rdest, Rsrel, Rsre2 Shift Right Arithmet. | Rdest = Rsrel > Rsre2 sra -
(MSB preserved)
mifhi Rdest Move from Hi Rdest = Hi - -
mflo Rdest Move from Lo Rdest = Lo - -
Iw Rdest, Addr Load word Rdest = mem32] Addr| - -
sw Rsre, Addr Store word mem32[Addr] = Rsre - -
la Rdest, Addr(or label) ** | Load Address (for | Rdest=Addr (or - -
printing strings) Rdest=lahel)
heq Rsrel, Rsre2, lahel Braneh if equal if (Rsrel == Rsre2) - -
PC = label
bne Rsrel, Rsre2, label Branch if not equal if (Rsrel = Rsre2) - -
PC = label
slt Rdest, Rsrel, Rsre2 Set if less than if (Rsrel < Rsre2) slti sltu | sltin
Rdest = 1
else Rdest = 0
j label Jump PC = label - -
jal label Jump and link $ra = PC + 4; - -
PC = lahel
jr Rsre Jump register PC = Rsre - -
jalr Rsre Jump and link register | $ra = PC + 4; - -
PC = Rsre
syseall system call depends on the value of - -

$v0

Page 17 of 17

	2020 Semester Two (November-December 2020) Examination Period
	Faculty of Information Technology
	Rules
	Instructions
	Marks
	MIPS code:
	Python code:
	Complexity:

	Instructions
	Marks
	MIPS code:
	Python code:
	Complexity:
	Implementations of the Set ADT
	Information text
	Question text
	Question text

	Hash Tables
	Question text

	Sorting
	Question text
	Question text

	Heaps
	Question text
	Question text

	Iterators
	Question text

	Scoping
	Question text

	Stack ADT and sorting
	Question text

	The Bisection Algorithm
	Information text
	Question text
	Question text
	Question text
	Question text
	Question text

	Appendix
	Information text

