
CSI2132 -Database I

Indexing & Hashing

Bisi Runsewe

▪ Indexing - Basic Concepts

▪ Ordered Index

▪ B+-Tree Index Files

▪ B- Tree Index Files

▪ Hashing

▪ Index on Multiple Keys

▪ Bitmap Index

CSI 2132 Winter 2022

Agenda

Indexing

CSI 2132 Winter 2022

The Value of Indexing

▪ Scattering the records that represent tuples of a relation R among various

blocks is not efficient

▪ Consider the query: SELECT * FROM R.

▪ Problem:

▪ Require examining every block in the storage system to find the

tuples of R.

▪ Solution:

▪ Reserve some blocks, perhaps several whole cylinders, for R.

▪ This will only enable scanning the tuples of R without scanning

the entire data store.

▪ Organization offers little help for a query like:

SELECT * FROM R WHERE a=10;

CSI 2132 Winter 2022

▪ Executing SQL queries takes a considerable amount

of time to access data from the disk

▪ Indexes: Are access structures are needed to locate

records in a relation directly

▪ Indexes are used by queries to find data from tables

quickly

▪ Indexing optimizes the performance of the database

by reducing the # of disks accesses to process queries

▪ Consider the query:

CSI 2132 Winter 2022

Indexing – Basic Concept

SELECT company_id, units, unit_cost
FROM Company
WHERE company_id = 18

Indexing – Basic Concept

▪ An index: Consists of a search key & a data reference

▪ Indexes – is a table containing only 2 columns using database keys

▪ 1st column – Search key that contains the primary or candidate key &

stored in sorted order

▪ 2nd column – Data reference or pointer that holds the address of the disk

block where the key value (tuple) can be found

▪ Index files are typically much smaller than the original file, they are also

added as additional files of disks

CSI 2132 Winter 2022

Search-Key Data Reference

A Single indexKey Value

Ordered Record

Index file

Indexing – Basic Concept

CSI 2132 Winter 2022

User Query:
SELECT
company_id, units,
unit_cost
FROM Company
WHERE
company_id = 18

▪ Indexing techniques are evaluated based on the following factors:

▪ Access Types: Types of access that are supported efficiently

▪ Includes finding:

▪ Records with a specified value in the attribute

▪ Records with an attribute value falling in a specified range of

values

▪ Access time: Time it takes to find a particular data

▪ Insertion time: Time it takes to insert a data

▪ Deletion time: Time it takes to delete a data

▪ Space overhead: Additional space occupied by an index structure

CSI 2132 Winter 2022

Index Evaluation Metrics

▪ A variety of indexes are possible; each of them uses a particular data

structure to speed up the search

▪ Two basic kinds of indexes:

▪ Ordered indexing: Indices are sorted, making data searching

faster

▪ Hash indexing: Indices are based on the search keys being

distributed uniformly across a range of “buckets” using a “hash

function”

▪ Note:

▪ No one technique is the best

▪ Each technique is best suited for a particular database application.

▪ There can be more than one index or hash function for a file

CSI 2132 Winter 2022

Types of Indexes

Ordered Indexes

CSI 2132 Winter 2022

Ordered Indexes

▪ Index entries are stored sorted on the search key

▪ A file may have several indices on different search keys

▪ Clustering index: An index whose search key specifies the sequential
order of the file

▪ Also called primary index

▪ The search key of a primary index is usually but not necessarily the
primary key

▪ Non-clustering index: An index whose search key specifies an order
different from the sequential order of the file

▪ Also called secondary index

▪ Clustering on multiple keys

CSI 2132 Winter 2022

Clustering (Primary) Index

▪ A file can have at most one clustering (primary) index & several non-

clustering (secondary) indexes

▪ There are 2 types of Primary Index:

▪ Dense index: Has an index record for every search key value in the

file.

▪ Sparse index: Has an index record for only some of the search key

values in the file

▪ Even with a sparse index, index size may still grow too large, leading to

several disk reads

▪ Solution: Construct a sparse index on the index, i.e., Multi-level Index

CSI 2132 Winter 2022

▪ Index record appears for every search-key value in the file, e.g.,

index on ID attribute of instructor relation

CSI 2132 Winter 2022

Dense Index Files

index on ID

▪ Dense index on dept_name, with instructor file sorted on

dept_name

CSI 2132 Winter 2022

Dense Index Files

file sorted on
dept_name

▪ Contains index records for only some search-key values.

▪ Applicable when records are sequentially ordered on search-key

▪ To locate a record with search-key value K:

▪ Find index record with largest search-key value < K

▪ Search file sequentially starting at the record to which the index

record points

CSI 2132 Winter 2022

Sparse Index Files

▪ Advantage over Dense Indexes:

▪ Requires less space & less maintenance overhead for

insertions / deletions

▪ Disadvantage:

▪ Generally slower than dense index for locating records.

CSI 2132 Winter 2022

Sparse Index Files

▪ Secondary indices must be dense, with an index entry for every search-key

value & a pointer to every record in the file.

▪ Pointer does not point directly to the file but to a bucket that contains pointers to

the file.

▪ Secondary indices improve the performance of queries on non-primary keys

Secondary index for instructor file
on noncandidate key dept name.

CSI 2132 Winter 2022

Non-Clustering (Secondary) Index

bucket

CSI 2132 Winter 2022

Primary key

Secondary key

Indexes on Multiple Keys

▪ Composite search key

▪ E.g., index on instructor relation on attributes (name, ID)

▪ Values are sorted lexicographically

▪ E.g., (John, 12121) < (John, 13514) and

(John, 13514) < (Peter, 11223)

▪ Can query on just name, or on (name, ID)

CSI 2132 Winter 2022

Indexes on Multiple Keys

▪ 4 dense indexes on Staff table

CSI 2132 Winter 2022

Composite
index

Multilevel Index

CSI 2132 Winter 2022

Multilevel Index

▪ When an index does not fit in memory, access can become expensive

▪ Solution:

▪ Treat index kept on disk as another sequential file & construct a

sparse index on it.

▪ Outer index: A sparse index of the basic index

▪ Inner index: The basic index file

▪ Idea: whenever an outer index is too large to fit in main memory, another

level of index can be created & so on.

▪ Indices at all levels must be updated on insertion or deletion from the file.

CSI 2132 Winter 2022

Multilevel Index

▪ Regardless of what form of
index is used, every index must
be updated whenever a record is
either inserted into or deleted
from the file.

Issues:

▪ As indexes increase or decrease,
this gives rise to the need for
self-managed multilevel index.

▪ Also, performance is degraded

▪ No guidelines for the creation of
multilevel index

▪ Solution: B+ trees

CSI 2132 Winter 2022

B+ Trees Indexing

CSI 2132 Winter 2022

Tree-Structured Indexes

▪ Many DBMSs use a data structure called a tree to hold data or indexes.

▪ A tree consists of a hierarchy of nodes.

▪ Each node in the tree (except the root node) has one parent node &
zero or more child nodes.

▪ A root node has no parent.

▪ A node that does not have any children is called a leaf node.

▪ The depth of a tree is the maximum number of levels between the root
& leaf node in the tree

▪ The creation process is bottom-up

▪ Tree-structured indexes are ideal for range-searches & good for equality
searches

CSI 2132 Winter 2022

Tree-Structured Indexes

▪ Tree-structured indexes can be classified into:

▪ ISAM (Indexed Sequential Access Method): A static index structure

that is effective when the file is not frequently updated

▪ B-tree:

▪ Very popular structure for organizing & maintaining large

indexes

▪ Provide guidelines for creating multilevel search trees

▪ A B-tree index is a multilevel index but structured differently

from multi-level index sequential files

▪ B+ tree:

▪ Variant of B-tree. Builds on trees

CSI 2132 Winter 2022

B+ Tree Index

▪ B+ Tree is particularly efficient when data does not fit in memory & must

be read from the disk

▪ Most queries can be executed more quickly if the values are stored in

order

▪ B+ Trees enables storing row data in tree structure

▪ The “B” in B+-tree stands for “balanced”, i.e., all branches of the tree have

same depth to ensure good performance for lookup, insertion & deletion

▪ Consists of 3 layers:

▪ Root

▪ Intermediate layer (any # of layers is possible)

▪ Leaves

CSI 2132 Winter 2022

B+ Tree Index

CSI 2132 Winter 2022

• Leaf nodes contain actual row data
• Non-leaf nodes contain only pointers to other non-leaf nodes, or to leaf nodes.

B+ Tree Index Example

B+ tree for instructor file (n = 4)

1 2 3 4 4-way search tree

CSI 2132 Winter 2022

Min Max
Key: [n/2]-1 n-1 = 3
Pointer [n/2] n =4

▪ Typical node:

▪ Pi are pointers to children or records (for leaf nodes)

▪ Ki are the search key values

▪ The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

▪ If search key value is >= key value, pointer to the left of key value is used

to find the next node to be searched

For a n-way search tree

CSI 2132 Winter 2022

B+ Tree Node Structure

Leaf & Non-leaf Nodes

▪ Leaf node: Pi points to a file record with search-key value Ki (i= 1,..,n-1)

▪ If Li, Lj are leaf nodes, i < j, then every search-key in Li <= Lj’s

search-key values.

▪ Non-leaf node: A form a multi-level sparse index on the leaf nodes.

CSI 2132 Winter 2022

One leaf node of a
B+-tree for

instructor file,
where n = 4 &

search key is name.

B+ Tree Construction

▪ Sequence of keys: 60, 30, 90…

▪ If a node is empty, then the data are

added on the left.

▪ If a node has one entry, then the left

takes the smallest valued key & the right

takes the biggest.

▪ If no sibling to the left, check the right

▪ If no sibling to the right, split the node

▪ If odd number of elements, put more on

in the right leaf node

▪ Values are ordered from left to right

CSI 2132 Winter 2022

Count > Min or Max

Queries on B+ Trees
Lookups

CSI 2132 Winter 2022

Queries of B+ Trees

▪ B+-trees can be used to find all
records with search key values in
a specified range [lb, ub]

▪ These queries are called Range
Queries.

▪ To locate Srinivasan, start from the
root node.

▪ If Srinivasan, is greater than
Mozart, follow the pointer to the
right, which leads to the second
level node containing the key values
Srinivasan.

▪ Then, follow the pointer to the left
of Srinivasan, which leads to the
leaf node containing the address of
record Srinivasan.

CSI 2132 Winter 2022

Updates on B+ Trees
Insertion & Deletion

CSI 2132 Winter 2022

▪ More complicated than queries (lookups), as they may require splitting or

combining nodes to keep the tree balanced

When splitting or combining are not required

▪ Insertion works as follows:

▪ Find leaf node where search key value should appear.

▪ If value is present, add new record to the bucket of pointers.

▪ If value is not present, insert value in leaf node based on order

▪ Create a new bucket & insert the new record.

▪ Deletion works as follows:

▪ Find record to be deleted & remove it from the bucket.

▪ If bucket is now empty, remove search key value from leaf node.

CSI 2132 Winter 2022

Updates on B+ Trees

▪ (a) shows the construction
of a tree after the insertion
of the first two records SL21
& SG37.

▪ (b) The next record to be
inserted is SG14. The
node is full, so we must
split the node by moving
SL21 to a new node.

▪ Also, we create a parent
node consisting of the
rightmost key value of the
left node.

▪ (c) The next record to be
inserted is SA9

CSI 2132 Winter 2022

Using a 3-way search tree

Example: B+ Tree Insertion

▪ SA9 should be located to the left of
SG14, but again the node is full.

▪ We split the node by moving SG37 to a
new node.

▪ We also move SG14 to the parent node.

▪ The next record to be inserted is
SG5. SG5 should be located right of
SA9 but again the node is full.

CSI 2132 Winter 2022

• We split the node by moving SG14
to a new node & add SG5 to parent
node.

• However, the parent node is also
full & has to be split.

• A new parent node has to be
created again.

• Finally, record SL41 is added to
the right of SL21.

B+ tree entries are deleted at the leaf nodes.

▪ Target entry is searched & deleted.

▪ If it is an internal node, delete & replace with the entry from left

position.

▪ After deletion, underflow is tested,

▪ If underflow occurs, distribute entries from nodes left to it.

▪ If distribution is not possible from left, then

▪ Distribute from nodes right to it.

▪ If distribution is not possible from left or from right, then

▪ Merge node with left & right to it.

CSI 2132 Winter 2022

B+ Tree Deletion

Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes

CSI 2132 Winter 2022

Example: B+ Tree Deletion

▪ Leaf containing Singh & Wu became underfull & borrowed a value Kim from its left sibling

▪ Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes

CSI 2132 Winter 2022

Example: B+ Tree Deletion

Next Class..

CSI 2132 Winter 2022

▪ Creating B+ tree index on string-valued attributes raises 2 problems:

1. Variable length strings as keys: Different nodes can have

different fanouts (# of pointers or children per node)

2. Strings can be long, leading to a low fanout & a

correspondingly increased tree height.

▪ It is important to increase fanout as this allows to direct searches to the

leaf level more efficiently

▪ Solution:

▪ Prefix Compression: Store a prefix of each search key value

sufficient to distinguish between the key values in the subtrees that it

separates

▪ E.g., “Silas” and “Silberschatz” can be separated by “Silb”

CSI 2132 Winter 2022

Indexing Strings

B-tree (above) and B+-tree (below) on same data

CSI 2132 Winter 2022

Example: B-Tree Index File

Hashing

CSI 2132 Winter 2022

Hashing

▪ A hash table is an effective data structure for fast retrieval of data no

matter how much data there is

▪ Hashing is widely used in database indexing, caching, error-checking, etc.

▪ Consider a simple 1D array variable:

▪ To find an item on the array, a brute force approach can be used, e.g., a

linear search which involves checking each item

▪ If the index # is known, the value can be retrieved quickly

▪ Question: How can we know which element of the array contains the

value? Each index # can be calculated using the value itself

▪ . CSI 2132 Winter 2022

Einstein Katz Singh Gold Crick Kim Wu Brandt Mozart

0 1 2 3 4 5 6 7 8

Hash Function

▪ Hashing uses hash functions with search keys as parameters to generate

the address of a data record

▪ Hash Function: algorithm is applied to a search key to transform it to a

relatively small # that corresponds to a position in the hash table

▪ i.e., a function that maps values in a search field into a range of buckets

▪ Bucket: denotes a unit of storage that can store one or more records,

typically a disk block, can be larger or smaller

▪ # of buckets = # of search key values stored in the database

▪ Qualities of a Hash function

1. The worst hash function maps all keys to the same bucket

2. The best hash function maps all keys to distinct addresses

CSI 2132 Winter 2022

Hash File Organization

▪ Hashing is an effective technique to calculate the direct location of a data

record on the disk without using index structure

▪ In hash file organization, instead of record pointers for hash index,

buckets store the actual records using a hash function

Methods for generating hash functions:

▪ For numeric keys, divide the key by the # of addresses, n, and take the

remainder

Address = Key mod n

▪ For alphanumeric keys, divide the sum of the ASCII codes in a key by the

of available addresses, n, and take the remainder

CSI 2132 Winter 2022

Hashing Schemes

1. Static Hashing, e.g., ISAM:

▪ A simple scheme that maps values to a fixed bucket

▪ Suffers from the problem of long overflow chains (collision), which

can affect performance

▪ Solution: Dynamic hashing, e.g., Extendible hashing & Linear

hashing

2. Extendible Hashing:

▪ Scheme uses a directory to support inserts & deletes efficiently with

no overflow pages

3. Linear hashing:

▪ Scheme uses a smart policy for creating new buckets & supports

inserts & deletes efficiently without the use of a directory

CSI 2132 Winter 2022

Static Hashing

▪ Hash indexing where the # of buckets is fixed when the index is created

▪ Formally, let K denote the set of all search-key values & let B denote the

set of all bucket addresses.

▪ A hash function h is a function from K to B.

▪ To insert a record with search key Ki, we compute h(Ki), which gives the

address of the bucket for that record.

▪ The pages containing the data can be viewed as a collection of buckets,

with one primary page & possibly additional overflow pages per bucket

▪ A file consists of buckets 0 through N−1, with one primary page per

bucket initially

▪ Buckets contain the data entries

CSI 2132 Winter 2022

Static Hashing

CSI 2132 Winter 2022

Static Hashing Operations

▪ Hash function is used to locate entries for search, insertion &

deletion

• Search: When a record needs to be retrieved, apply the hash function h

to identify the bucket to which it belongs & then search this bucket

▪ Insertion: To insert a record, use the hash function h to identify the

correct bucket & then put the data entry there

Bucket address = h(K)

▪ If there is no space for this entry,

▪ Allocate a new overflow page, put the data entry on this page & add

the page to the overflow chain of the bucket

• Delete: a search followed by a deletion operation

CSI 2132 Winter 2022

▪ Bucket overflow can occur because of

▪ Insufficient buckets

▪ Skew in distribution of records. This can occur due to two reasons:

▪ multiple records have same search-key value

▪ chosen hash function produces non-uniform distribution of key

values

▪ Although the probability of bucket overflow can be reduced, it cannot be

eliminated; it is handled by using overflow buckets.

▪ Overflow Buckets: Reorganize the files by doubling the # of buckets &

redistributing the entries across the new set of buckets

▪ Suffers from one major defect—the entire file must be read & twice as

many pages must be written, to achieve the reorganization

CSI 2132 Winter 2022

Bucket Overflow (Collision)

Handling of Bucket Overflows

▪ Closed addressing or Closed hashing or Overflow chaining:

▪ Occurs where records are stored in different buckets

▪ Overflow buckets are chained together in a linked list

▪ Compute the hash function & search the corresponding bucket to

find a record

▪ Open addressing:

▪ Occurs where all records are stored in one bucket

▪ Use the available space in some other buckets

▪ Uses linear probing to determine the next slot

▪ Not used much in database applications

CSI 2132 Winter 2022

Open Addressing

▪ Consider a

simple hash

function as “key

mod 7”

▪ Sequence of keys

as 50, 700, 76,

85, 92, 73, 101

CSI 2132 Winter 2022

Closed Addressing

CSI 2132 Winter 2022

▪ In static hashing, function h maps search-key values to a fixed set of B of
bucket addresses

▪ # of bucket is fixed but databases may grow with time

▪ If # is too small, we get too many ‘collisions’ resulting in records of
many search key values being in the same bucket, degrading
performance

▪ If # is too large, wastes space

▪ A Solution:

▪ Periodic re-organization of the file with a new hash function

▪ Expensive, disrupts normal operations

▪ Better solution:

▪ Allow the # of buckets to be modified dynamically

CSI 2132 Winter 2022

Drawback of Static Scheme

Dynamic Hashing

▪ Schemes proposed that allow the # of buckets to be increased in a more

incremental fashion

▪ Periodic Rehashing

▪ E.g., If number of entries in a hash table becomes, e.g., 1.5 times size

of hash table, create new hash table of size 2 times the size of

previous hash table. Rehash all entries to new table.

▪ Linear Hashing:

▪ Rehashing in an incremental manner

▪ Extendible Hashing

▪ A mechanism in which data buckets are added & removed

dynamically & on-demand

CSI 2132 Winter 2022

Extendible Hashing

▪ A dynamically updateable disk-based index structure, which implements

a hashing scheme utilizing a directory

▪ Designed to minimize the cost of rehashing

▪ Use least significant bits (LSB) of a key to hash the key into a bucket

▪ Directories: Containers that store pointers to buckets

▪ Buckets: Store the hashed keys

▪ Local Depth: # assigned per bucket. (# of bits used to hash data into

bucket)

▪ Global Depth: Maximum # of bits used to hash data to any of the

buckets

▪ Initially, Local Depth = Global Depth for all bucket

CSI 2132 Winter 2022

Extendible Hashing Steps

1. Analyze data elements, e.g., int, string, etc.

2. Convert to binary format, e.g., 49 is 110001. For strings use ASCII equivalent

3. Check Global depth of the directory, e.g., suppose global depth is 3

4. Identify the directory, e.g., for 110001, the LSB is 001 for a global depth of 3

5. Navigate to the bucket pointed by the directory with id-001

6. Insertion & Overflow check, else end if no overflow

7. If an overflow occurs,

1. Case 1: if global depth = local depth, then expand directory, split bucket &

increment global depth by 1

2. Case 2: if local depth < global depth, split bucket & increment local depth

value by 1

8. Rehash of split bucket elements

CSI 2132 Winter 2022

Example: Insertion

CSI 2132 Winter 2022

▪ Assuming the bucket capacity for each

bucket page is 2

▪ Insert 13 (Binary: 1101 – ends in 01)

▪ Look to only 2 bits because Global Depth

= 2

▪ Insert 20 (Binary: 10100 - ends in 00)

▪ Result in bucket overflow:
1. Double the directory
2. Increment Global

Depth by 1
3. Rehash only the

overflowed bucket
4. Increase this bucket’s

local depth

▪ Insert 20 (Binary: 10100 -

ends in 00)

▪ Results in bucket overflow:

1. Double the directory

2. Increase Global Depth

3. Rehash only the

overflowed bucket

4. Increase this bucket’s

local depth

CSI 2132 Winter 2022

2. Increase Global Depth by 1

1. Double the
directory

3. Rehash only
the overflowed
bucket

4. Increase this
bucket’s local
depth

Example: Deletion

▪ Delete 8 (1000 Ends in 000)

▪ Results in an empty bucket

▪ Delete this bucket

▪ Merge Bucket 000 with Bucket

100 into 1

▪ Make them point to the same

bucket

▪ Decrease both their Local Depths

by 1

CSI 2132 Winter 2022

Multiple Key Access

CSI 2132 Winter 2022

▪ Use multiple indices

for certain types of

queries.

▪ Example:

SELECT ID

FROM instructor

WHERE

dept_name =

“Finance”

AND salary =

80000

▪ Possible strategies for processing query using

indices on single attributes:

1. Use index on dept_name to find

instructors with department name Finance;

test salary = 80000

2. Use index on salary to find instructors

with a salary of $80000; test dept_name =

“Finance”.

3. Use dept_name index to find pointers to

all records pertaining to the “Finance”

department.

4. Similarly use index on salary. Take

intersection of both sets of pointers obtained.

CSI 2132 Winter 2022

Multiple Key Access

▪ An alternative strategy for this case is to create & use an index on a
composite search key (dept name, salary)

▪ Composite search keys are search keys containing more than one
attribute, E.g., (dept_name, salary)

▪ Ordered (B+ tree) index can be used on the preceding composite search
key to answer efficiently queries of the form:

▪ Queries which specifies an equality condition on the first attribute &
range on second attribute can be handled

CSI 2132 Winter 2022

Index on Multiple Keys

▪ Suppose we have an index on combined search-key (dept_name, salary)

with the where clause

where dept_name = “Finance” and salary = 80000

▪ The index on (dept_name, salary) can be used to fetch only records that

satisfy both conditions.

▪ Can also efficiently handle with range on second attribute

where dept_name = “Finance” and salary < 80000

▪ But cannot efficiently handle

where dept_name < “Finance” and balance = 80000

▪ May fetch many records that satisfy the first but not the second

condition

CSI 2132 Winter 2022

Index on Multiple Keys

▪ A bitmap index is a special type of index designed for efficient query

processing on multiple keys

▪ It is a binary valued 2D array created with an indexed column for

every record in the table

▪ Records in a relation are assumed to be numbered sequentially

▪ Applicable on attributes that take on a relatively small # of distinct

values.

▪ E.g., gender, country, state, …

▪ E.g., income-level (income broken up into a small # of levels such as

0-9999, 10000-19999, 20000-50000, 50000- infinity)

▪ Bitmap indexes use bit arrays (commonly called bitmaps) & answer

queries by performing bitwise logical operations on these bitmaps

CSI 2132 Winter 2022

Bitmap Index

▪ Simply, bitmap index on an attribute has a bitmap for each value of

the attribute.

▪ The bit in a row of bitmap is “1” if the record has the value v for the

indexed attribute, or “0” otherwise

▪ Example:

CSI 2132 Winter 2022

Bitmap Index

▪ Bitmap indexes are useful for queries on multiple attributes

▪ not particularly useful for single attribute queries

▪ Queries are answered using bitmap operations

▪ Intersection (and)

▪ Union (or)

▪ Each operation takes two bitmaps of the same size & applies the

operation on corresponding bits to get the result bitmap

▪ E.g., 100110 AND 110011 = 100010

100110 OR 110011 = 110111

NOT 100110 = 011001

▪ Males with income level L1: 10010 AND 10100 = 10000

CSI 2132 Winter 2022

Bitmap Index

▪ Advantages:

▪ Reduced storage requirements compared to other indexing

techniques

▪ Bitmap indices are generally very small compared with relation size

▪ Reduced response time for large classes of ad-hoc queries

▪ Multiple indices can be combined for executing a query

CSI 2132 Winter 2022

Bitmap Index

▪ Syntax:

E.g.,: CREATE INDEX b-index ON branch(branch_name)

▪ Use CREATE UNIQUE INDEX to indirectly specify & enforce the

condition that the search key is a candidate

▪ Not really required if SQL UNIQUE integrity constraint is supported

▪ To drop an index

CSI 2132 Winter 2022

SQL Index Definition

DROP INDEX <index-name>

CREATE INDEX <index-name>
ON <relation-name>(<attribute-list>)

Creation of Indices

▪ Most database systems allow specification of type of index &

clustering

▪ Indices on primary key are created automatically by all databases

▪ Some database also create indices on foreign key attributes

▪ Indices can greatly speed up lookups, but impose cost on updates

CSI 2132 Winter 2022

CREATE INDEX takes_pk
ON takes (ID,course_ID, year, semester, section)

DROP INDEX takes_pk

