~~ JAMES COOK
w= UNIVERSITY

AAAAAAAAA

Spatio-Temporal Data Mining
&
Trajectory Data Mining




Reading o

AUSTRALIA

Di Wang, Tomio Miwa and Takayuki Morikawa (2020). Big
Trajectory Data Mining: A Survey of Methods, Applications, and
Services https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472055/

Yu Zheng (2015) Trajectory Data Mining: An Overview, ACM
Transactions on Intelligent Systems and Technology, 6(3): 29

Microsoft 2007. https://www.microsoft.com/en-
us/research/project/trajectory-data-mining/



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472055/
https://www.microsoft.com/en-us/research/project/trajectory-data-mining/
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» Geospatial/ Spatial-temporal data mining
— Definitions, techniques & use cases

* Trajectory data mining




What 1s Spatial? =,
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« Relating to or existing in space only
« Take a look at https://blog.locale.ai/
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https://blog.locale.ai/
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What 1s Spatio-Temporal?  =umeox
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» Relating to both space and time
« Spatial (location) and temporal (time) attached
« Changes and movements over time

https://www.flightradar24.com/51.5,-0.12/6



https://www.flightradar24.com/51.5,-0.12/6

Geo-Spatial data
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* An eq. of the data

VOLCANX@20 : NAME

&) Weka Explorer: Visualizing 3D_spatial_network-weka filters.unsupervised.attribute.Remove-R1

509 : Baker : US-Washington :

511 : GlacierPeak : US-Washington :

513 : Rainier : US-Washington :

515 : St.Helens : US-Washington :
- o x

| X:LONG (Num) (v [ v: LaT (um) v
[Coloun ALT (Mum) |'] [Selectlnstance |']
Reset [ Clear Jl Open J[ Save J Jitter ()
Plot: 30_spatial_ k-weka.filters. ised.attribute.Ri R1
57.751 » R . -
v D R L
A
.3
57. 1667
56.582 b e
§.15 2,67 11.193 .
v
Class colour
—8.‘61 62.‘91'? 134.I4419

: LOCATION

: LATITUDE :  LONGITUDE

48.7767982 : -121.8109970
48.1118011 : -121.1116001
46.8698006 : -121.75089995
46.1997986 : -122.1809998

[

Geospatial data

We have looked at it before!
3d_spatial.arff in Lab 4.1




Spatial-temporal Data

Best example: google maps timeline
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. Explicit Trajectory Data '

)
e.g., @Y GPS Data

 Sl.4 4 ..................... . Supplementary Data
e e i eg.©Q PoOIData

Q‘ﬁ Trajectory Data ==

Implicit Trajectory Data
@+ [P Sensor-based Data
(Wi ) Signal-based Data :
. 4 'a Web-based Data
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« Space and time are ubiquitous aspects of reality
 We are living in a space with time dimension...

* Thus basically all human (things) related data are
spatio-temporal in nature

« Advances in automatic (semi-automatic) data
generators (sensors, RFID tags, GPS receivers,
mobiles etc) result in MASSIVE spatio-temporal
data

 |tis believed that more than 95% of business
data are spatial or spatio-temporal
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» Geospatial -> space only

» Geospatial temporal -> space and time
— Trajectory data mining => + Movement

— “a trace generated by a moving object within a
certain spatiotemporal context and is
generally represented by a series of
chronologically ordered points.” (Zhang 2014)
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* Vehicle trajectories (cars, buses, trucks
etc)

* Animal movements (birds, sharks etc)

* People movements (tourists, photo-takers,
students etc)

* Mouse click movements (HCI, software
design etc)

Can you name other egs?
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Understanding Movements
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« Animal movements

— Cows frequent visits to shades, but rare visits
to grazing areas => indication of sickness?

— Bees periodic visits to hive from flowers =>
useful for beekeeping

 Human movements

— Frequent visits to fast food restaurants but
rare visits to gyms/parks/beaches =>
indication of health risk

— Frequent visits to Indian/Korean/Japanese
restaurants => Asian?




Moving Objects = IR
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Questions to ask: Where, when, why, what?
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Raw GPS Trajector

® dog_walk.txt

PRRPRPRRPRRPRPRPERPRPRRPRPRPRRPPRPERPRLRPERRPPRLRRERPRLPPRERPPRRERRPRERPPREPPRERLPPRPRPRERPRPRREPRERRPRRERRPRERRR R

-16.898353, 145.694882, 2016-11
-16.898339, 145.694865, 2016-11
-16.898307, 145.694836, 2016-11
-16.898271, 145.694818, 2016-11
-16.898265, 145.694808, 20816-11

-16.89825, 145.694795, 2016-11-

-16.898232, 145.69477999999998,
-16.898222, 145.694772, 2016-11
-16.898207, 145.694757, 2016-11
-16.898203, 145.694745, 2016-11
-16.898203, 145.69472999999996,
-16.898204000000003, 145.694716
-16.898209, 145.69470400000003,

-16.898217, 145.69469, 2016-11-

-16.898229, 145.694677, 2016-11
-16.898242, 145.694668, 2016-11
-16.898253, 145.694661, 2016-11
-16.898261, 145.694652, 20816-11
-16.898271, 145.694641, 2016-11

—-16.898281, 145.69463, 2016-11-
-16.89829, 145.694623, 2016-11-

—-16.898296999999996, 145.694616
-16.898301, 145.69460499999997,
-16.898305, 145.69459499999996,
-16.898311, 145.694584, 2016-11
-16.898320000000002, 145.694573
-16.898327, 145.69456300000002,
-16.898335, 145.69455099999996,
-16.898344, 145.694542, 2016-11

-16.89835, 145.694535, 2016-11-

-16.898355, 145.694528, 2816-11
-16.898359, 145.694518, 2016-11
-16.898362, 145.694509, 2016-11
-16.898368, 145.69450200000003,
-16.898381, 145.694499, 2016-11
-16.898396, 145.69449400000002,
-16.898412, 145.694487, 2016-11

-16.898426, 145.69448, 2016-11-

-16.898434, 145.694472, 2016-11
-16.898445000000002, 145.694463
-16.898452, 145.69445299999998,
-16.898452, 145.694439, 20816-11
-16.898452, 145.69442800000002,
-16.898455, 145.694417, 2016-11
-16.898466, 145.694408, 2016-11
-16.898479, 145.694403, 2016-11
-16.898491, 145.694398, 20816-11

-16.898503, 145.69439, 2016-11-

-16.898512999999998, 145.694382

-16.89852, 145.694372, 2016-11-

-16.898524, 145.69436400000004,
-16.898529, 145.69435500000003,
-16.898535000000003, 145.694346
-16.898542, 145.694338, 2016-11
-16.898548, 145.69432999999998,
-16.898555999999996, 145.694320
-16.898565, 145.694314, 2016-11
-16.898575000000005, 145.694306
-16.898584, 145.694296, 2016-11
-16.898592, 145.694288, 20816-11

—-06T18:13:087, MOVING
-06T18:13:08, MOVING
-@06T18:13:089, MOVING
—-@06T18:13:10, MOVING
-06T18:13:11, MOVING
©6T18:13:12, MOVING
2016-11-06T18:13:13, MOVING
-@6T18:13:14, MOVING
—-@06T18:13:15, MOVING
-@06T18:13:16, MOVING
2016-11-06T18:13:17, MOVING
, 2016-11-06T18:13:18, MOVING
2016-11-06T18:13:19, MOVING
©6T18:13:20, MOVING
-06T18:13:21, MOVING
-@06T18:13:22, MOVING
—-@06T18:13:23, MOVING
-06T18:13:24, MOVING
-06T18:13:25, MOVING
©6T18:13:26, MOVING
©6T18:13:27, MOVING|
, 2016-11-06T18:13:28, MOVING
2016-11-06T18:13:29, MOVING
2016-11-06T18:13:30, MOVING
—-@06T18:13:31, MOVING
, 2016-11-06T18:13:32, MOVING
2016-11-06T18:13:33, MOVING
2016-11-06T18:13:34, MOVING
-@6T18:13:35, MOVING
©6T18:13:36, MOVING
-@6T18:13:37, MOVING
-06T18:13:38, MOVING
—-06T18:13:39, MOVING
2016-11-06T18:13:40, MOVING
—-06T18:13:41, MOVING
2016-11-06T18:13:42, MOVING
-@06T18:13:43, MOVING
©06T18:13:44, MOVING
-@06T18:13:45, MOVING
, 2016-11-06T18:13:46, MOVING
2016-11-06T18:13:47, MOVING
-@6T18:13:48, MOVING
2016-11-06T18:13:49, MOVING
-@06T18:13:50, MOVING
-@6T18:13:51, MOVING
—-@6T18:13:52, MOVING
-@6T18:13:53, MOVING
©06T18:13:54, MOVING
, 2016-11-06T18:13:55, MOVING
©06T18:13:56, MOVING
2016-11-066T18:13:57, MOVING
2016-11-06T18:13:58, MOVING
99999996, 2016-11-06T18:13:59, MOVING
—-06T18:14:00, MOVING
2016-11-06T18:14:21, MOVING
99999997, 2016-11-06T18:14:082, MOVING
-06T18:14:083, MOVING
00000004, 2016-11-06T18:14:04, MOVING
—-06T18:14:085, MOVING
-06T18:14:06, MOVING

— . . ]

How the data looks like?




~== JAMES COOK

Overview of Trajectory Data Mlnlng =~ UNIVERSITY

AUSTRALIA

Filtering noise™ Map-matching*

Interpolation Stay point detection*
Preprocessing

Periodic Patterns* Regions-of-Interest
Sequential Patterns Trajectory Clustering™®
Trajectory Patterns Trajectory Classifier*

Pattern Mining

Spatio-temporal Trajectories




TDM Noise Filtering g,
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 \What?

— The process of fitting raw trajectory recordings onto
an underlying map structure before data mining

 How?
— Very different from ‘structured data’

— The idea is how do you combine location (map) with
time data?

— Noisy with GPS etc.




I[ssues with GPS Trajectories SRS
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e Spatial uncertainties
* Errors and noisy
* [rregular

* Could be too densely recorded or too
coarsely recorded

-> Preprocessing




Trajectory Simplification = JpBscoox
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« Aim
— Reduce the complexity of an input trajectory
— Sensors capture as much movement details as possible by
oversampling but still want to preserving the motion of the tracked
entity
* Performance metrics

— Reduce processing time
— Reduce Error measure

« \WWhat error measure?

— Criteria include perpendicular Euclidean distance and time
synchronized Euclidean distance




[llustration of Error Measures SHuEscox
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* Perpendicular Euclidean Distance
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Stay Point Detection = pumscoo
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The identification of a location a moving object has
stayed for a while within a certain distance threshold

These stay points can indicate interesting insights for eg.
at a restaurant/ shopping mall.

Uses clustering technique studied earlier eg DBSCAN

Stay point detection
.~~~ _Stay Point 2

&l N I - _Ps

pE h‘n_ ) d*f ,04 lex
Stay Point1 P& ~--~
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Stop/Move Representation
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Stop/Move Representation — FHmEH
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Locations: restaurants,
shopping malls etc

e/
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1. Data collection

Server
Device 1 ]
2. Pre-processing
online Collected Refined
Device 2 trajectories trajectories
7~
// /

Device3 [

y 3. Trajectory mining

...... / \

/
/
. 7 Patterns
Device n




Trajectory Data Mining
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« Categories of patterns:
— moving together patterns,
— trajectory clustering,
— periodic patterns and
— frequent sequential patterns
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Trajectory Clustering = ook
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* Group similar trajectories geometric proximity in
spatial/spatiotemporal space.

* Find a representative trajectory from many
trajectories




Trajectory Clustering = ook

AAAAAAAA

Representative trajectory
of a swarm/ group?




Trajectory Classification
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* With supervised learning, classify
trajectories into activities like hiking/ dining
or different modes (walking/ driving)
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Trajectory Classification
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 Predict next move.

— If it is driving activity, where is next place of
interest after A/ B?

@
o
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* Obtain next destination with probability.
After drinks and eating, next?
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» Periodic patterns are trajectories periodically
executed by a moving object. For eg. regular
movement patterns from office staff, which are
rather similar each working day.

*  There are 2 main approaches:
*  Fixed Period Approach
+  Reference Spot Approach




Spatio-Temporal PPM = RSN
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¥ Fixed (Time) Period Approach

B To segment the long trajectory into a set of smaller (shorter) sub-
trajectories based on a given fixed time period

B Reference Spot Approach

® Find reference spots using clustering algorithms and then find associated
periods for reference spots

reference
spot 1 reference
| °o® spot 3
Cluster these points & reference

use as reference spot 2




|

Yl

S/ \4

Periodic Pattern Mining OO

AUSTRALIA

Not easy! Eqg.
movements
of a bee (or
bees)
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Trajectory Pattern Mining  SRiwEH
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TPM considers spatio-temporal information

In addition, add on aspatial semantic information
to produce richer patterns

Clear, weekday, 1hr 5.7hr 1hr

Ol |y

HOTEL
S

Rainy, weekday, 1hr 3-dhr 1hr 2.3hr

HOTEL
S




Open Challenges = iusscoo
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* Incorporate semantics — semantic
trajectory data mining by incorporating
aspatial information

* Techniques largely the same:

— classification is still in its infancy
— Association mining (more used)

— Lots of pre-processing with uncertainties and
noise handling
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