(1) This is a preview of the published version of the quiz.

Started: Nov 8 at 18:55

Quiz Instructions

Let X_1, X_2, \ldots, X_n be identically and independently distributed random variables, each with mean 0, variance 1, and moment generating function M . Define the following quantities $S_n = \sum_{i=1}^n X_i, \ \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \ Z_n = n^{1/2} \bar{X}_n.$ Which of the follow statement is not correct ? $M_{Z_n}(t) = \left\{ M_{S_n}\left(\frac{t}{\sqrt{n}}\right) \right\}^n$ $M_{\bar{X}_n(t)} = \left\{ M_X\left(\frac{t}{n}\right) \right\}^n$ $Z_n \stackrel{d}{\to} N(0, 1)$ when $n \to \infty.$	1 pts
$egin{aligned} & O \ M_{Z_n}(t) = \left\{ M_{S_n}\left(rac{t}{\sqrt{n}} ight) ight\}^n \ & O \ M_{ar{X}_n(t)} = \left\{ M_X\left(rac{t}{n} ight) ight\}^n \ & O \ Z_n \stackrel{d}{ o} N(0,1) ext{ when } n o \infty. \end{aligned}$	$f_X(t)$.
$egin{aligned} & O \ M_{ar{X}_n(t)} = \left\{ M_X\left(rac{t}{n} ight) ight\}^n \ & O \ Z_n \stackrel{d}{ o} N(0,1) ext{ when } n o \infty. \end{aligned}$	
$igcap_n \stackrel{d}{ ightarrow} N(0,1) ext{ when } n ightarrow \infty.$	
$\bigcirc M_{S_n(t)} = \left\{M_X(t) ight\}^n$	

Question 21 ptsConsider the two random variables X and Y that have a bivariate normal
distribution with mean $\mu_x = \mu_y = 0$, standard deviation $\sigma_x = \sigma_y = 1$ and
correlation ρ . What is the value of $E(XY^2)$ (hint: using conditional expectation)? $\bigcirc \rho$ $\bigcirc 0$

 $\bigcirc 1$ $\bigcirc \rho^2$

Question 4 1	pts
Consider the two discrete random variables X and Y , each of which only received a value of 1 or -1. Suppose the marginal distribution of X is given by $P(X=1)=0.7,\ P(X=-1)=0.3.$ The conditional expectation	ives

$$E(Y|X=1)=0.6,\; E(Y|X=-1)=-0.5.$$
 What is the value for the marginal expectation $E(Y)$?

For questions 5-8, please show all the workings. Upload your work to the corresponding <u>Assignment item</u>. Make sure you upload your work by 3:05pm (Wednesday 31 Aug - Sydney time).

Question 5 (1.5 marks)

Let U be a continuous uniform random variable on (0, 1). Find the density for V = 1/U. Make sure to specify the range of values (i.e the support) of V.

Question 6 (1.5 marks)

Consider tossing a coin n times; for each time, the probability that a coin lands head is p. The number of heads, N, is recorded. Then, the same coin is tossed for N more times. What is the expectation for the total number of heads in this process?

Question 7 (3 marks)

Suppose the bivariate random variables $oldsymbol{X}$ and $oldsymbol{Y}$ have the joint density

$$f_{X,Y}(x,y) = rac{1}{\sqrt{2\pi x^2}} \mathrm{exp}igg\{ -rac{1}{2x^2}(y-x)^2 igg\}, \ 0 < x < 1, -\infty < y < \infty$$

Let $U = \frac{Y}{X}$. Find the joint density of U and X and show that U and X are independent.

Question 8 (2 marks)
Consider the hierarchical model
$$Y|N \sim \chi^2_{2N}$$
, $N \sim \text{Poisson}(\theta)$.
(a) Show that the (marginal) moment generating function of Y is given by
 $M_Y(t) = \exp\left(\frac{2t\theta}{1-2t}\right)$, $t < 1/2$. You may find the expression $a^b = e^{b\log(a)}$
useful for the proof.
(b) Using the fact that $E(Y) = 2\theta$, $\operatorname{Var}(Y) = 8\theta$, prove that as $\theta \to \infty$, the
random variable $Z = \frac{Y - E(Y)}{\sqrt{\operatorname{Var}(Y)}} \stackrel{d}{\to} N(0, 1)$.

Some useful formulas: <u>Useful formulas.pdf</u> \downarrow (https://canvas.sydney.edu.au/courses/44955/files/26270143/download?download_frd=1) 08/11/2022, 18:55