
CS 446 / ECE 449 — Homework 1

your NetID here

Version 1.3

Instructions.

• Homework is due Tuesday, February 16, at noon CST; no late homework accepted.

• Everyone must submit individually at gradescope under hw1 and hw1code.

• The “written” submission at hw1 must be typed, and submitted in any format gradescope accepts
(to be safe, submit a PDF). You may use LATEX, markdown, google docs, MS word, whatever you like;
but it must be typed!

• When submitting at hw1, gradescope will ask you to mark out boxes around each of your answers;
please do this precisely!

• Please make sure your NetID is clear and large on the first page of the homework.

• Your solution must be written in your own words. Please see the course webpage for full academic
integrity information. Briefly, you may have high-level discussions with at most 3 classmates, whose
NetIDs you should place on the first page of your solutions, and you should cite any external reference
you use; despite all this, your solution must be written in your own words.

• We reserve the right to reduce the auto-graded score for hw1code if we detect funny business (e.g., your
solution lacks any algorithm and hard-codes answers you obtained from someone else, or simply via
trial-and-error with the autograder).

• When submitting to hw1code, only upload hw1.py and hw1 utils.py. Additional files will be ignored.

Version History.

1. Initial version.

1.1 Fixed typo in hint for 1c.

1.2 Clarified wording of 1a, 1b.

1.3 Fixed bolding of vectors in 2c.

1

1. Linear Regression/SVD.
Throughout this problem let X be the n× d matrix with the feature vectors (xi)

n
i=1 as its rows. Suppose

we have the singular value decomposition X =
∑r

i=1 siuiv
>
i .

(a) Let the training examples (xi)
n
i=1 be the standard basis vectors ei of Rd with each ei repeated ni > 0

times having labels
(
yij
)ni

j=1
. That is, our training set is:

d⋃
i=1

{(
ei, yij

)}ni

j=1
,

where
∑d

i=1 ni = n. Show that for a vector w that minimizes the empirical risk, the components wi

of w are the averages of the labels
(
yij
)ni

j=1
: wi = 1

ni

∑ni

j=1 yij .

Hint: Write out the expression for the empirical risk with the squared loss and set the gradient equal
to zero.

Remark: This gives some intuition as to why “regression” originally meant “regression towards the
mean.”

(b) Returning to a general matrix X, show that if the label vector y is a linear combination of the
{ui}ri=1 then there exists a w for which the empirical risk is zero (meaning Xw = y).

Hint: Either consider the range of X and use the SVD, or compute the empirical risk explicitly with
y =

∑r
i=1 aiui for some constants ai and ŵols = X+y.

Remark: It’s also not hard to show that if y is not a linear combination of the {ui}ri=1, then the
empirical risk must be nonzero.

(c) Show that X>X is invertible if and only if (xi)
n
i=1 spans Rd.

Hint: Recall that the squares of the singular values of X are eigenvalues of X>X.

Remark: This characterizes when linear regression has a unique solution due to the normal equation
(note that we always have at least one solution obtained by the pseudoinverse). We would not have
had a unique solution for part (a) if we had an ni = 0.

(d) Provide a matrix X such that X>X is invertible and XX> is not. Include a formal verification of
this for full points.

Hint: Use part (c). It may be helpful to think about conditions under which a matrix is not invertible.

Solution.

2

2. Loss functions/MLE.
Recall that maximum likelihood estimation is a technique used to maximize the probability of observed
data given parameters w of a probability model: P (data|w). In machine learning, we want to find the
most likely set of parameters w given the observed data. This can be expressed in terms of the likelihood
function L(w) = P (data|w) as follows:

arg max
w

P (w|data) = arg max
w

P (data|w)P (w)

P (data)
= arg max

w
P (data|w)P (w). (1)

Assuming all parameters w are equally likely, (1) reduces to arg maxw P (data|w) (we operate under this
assumption for parts (a) and (b) of this problem). We represent the probability our model with parameters
w assigns to data (xi, yi)

n
i=1 by the likelihood function L(w) =

∏n
i=1 pw(yi|xi) where pw(yi|xi) is our

model’s estimated probability of label yi given xi.

(a) Suppose we are implementing a multiclass classifier with k target classes. Call the target class of the
i’th training example ti ∈ {1, . . . , k}. We can encode the label yi of the i’th training example as a
one-hot vector with a 1 at index ti and 0s elsewhere. Consider the likelihood function

L(w) =

n∏
i=1

k∏
j=1

pw(tj |xi)
yij ,

where yij is the j’th element of the vector yi. Show that maximizing this likelihood function is
equivalent to minimizing the cross entropy loss (from Lecture 4) over the dataset

−
n∑

i=1

k∑
j=1

yij log(pw(tj |xi)).

Remark: Why the double product? The inner one,
∏k

j=1 pw(tj |xi)
yij , is just a clever way of writing

the probability of the i’th training example: all of the exponents yij will be zero except for yti , which
is 1. Therefore, the product reduces to the probability of the true label given the input.

(b) Recall that for logistic regression we minimize the logistic loss `logistic(yw
>x) when we model the

probability of a positive label by pw(1|x) = 1

1+e−w>x
and the labels y ∈ {−1, 1}. Another common

loss function for logistic regression is binary cross entropy, defined by

−y log(pw(1|x))− (1− y) log(1− pw(1|x)),

where the labels y ∈ {0, 1} (the cross entropy derived in part (a) is a generalization of this). Show
that `logistic(yw

>x) with y = −1 is equal to binary cross entropy with y = 0 and that `logistic(yw
>x)

with y = 1 is equal to binary cross entropy with y = 1.

Remark: This shows that the loss functions are equivalent up to a relabeling.

(c) Now we will drop the assumption that all parameters w are equally likely. Specifically, assume
that the wi are i.i.d. and follow a normal (Gaussian) distribution with mean 0 and variance 1/λ:

wi ∼ N (0, 1/λ). Independence of the wi implies P (w) =
∏d

i=1 P (wi). Further, assume that yi|xi,w
follows a normal distribution with mean w>xi and variance 1: yi|xi,w ∼ N (w>xi, 1). Show that

arg max
w

n∏
i=1

pw(yi|xi)P (w) = arg min
w

1

2

n∑
i=1

(w>xi − yi)2 +
λ

2

d∑
j=1

w2
j

 .

Remark: This is an interpretation of the regularization term for ridge regression. The probability of
very positive or very negative wi is low if wi follows a normal distribution, which is reflected by a
larger penalty

∑
i w

2
i . (Note that we also dropped the 1/n factor of the empirical risk by maximum

likelihood convention).

Solution.

3

3. Linear Regression.
Recall that the empirical risk in the linear regression method is defined as R̂(w) := 1

2n

∑n
i=1(w>xi − yi)2,

where xi ∈ Rd is a data point and yi is an associated label.

(a) Implement linear regression using gradient descent in the linear gd(X, Y, lrate, num iter)

function of hw1.py. You are given as input a training set X as an n× d tensor, training labels Y as an
n× 1 tensor, a learning rate lrate, and the number of iterations of gradient descent to run num iter.
Using gradient descent, find parameters w that minimize the empirical risk R̂(w). Use w = 0 as
your initial parameters, and return your final w as output. Prepend a column of ones to X in order to
accommodate a bias term in w.

Library routines: torch.matmul (@), torch.tensor.shape, torch.tensor.t, torch.cat,

torch.ones, torch.zeros, torch.reshape.

(b) Implement linear regression by using the pseudoinverse to solve for w in the linear normal(X,Y)

function of hw1.py. You are given a training set X as an n × d tensor and training labels Y as an
n× 1 tensor. Return your parameters w as output. As before, make sure to accommodate a bias
term by prepending ones to the training examples X.

Library routines: torch.matmul (@), torch.cat, torch.ones, torch.pinverse.

(c) Implement the plot linear() function in hw1.py. Use the provided function hw1 utils.load reg data()

to generate a training set X and training labels Y. Plot the curve generated by linear normal()

along with the points from the data set. Return the plot as output. Include the plot in your written
submission.

Library routines: torch.matmul (@), torch.cat, torch.ones, plt.plot, plt.scatter,

plt.show, plt.gcf where plt refers to the matplotlib.pyplot library.

Solution.

4

4. Polynomial Regression.
In Problem 3 you constructed a linear model w>x =

∑d
i=1 xiwi. In this problem you will use the same

setup as in the previous problem, but enhance your linear model by doing a quadratic expansion of the
features. Namely, you will construct a new linear model fw with parameters

(w0, w01, . . . , w0d, w11, w12, . . . , w1d, w22, w23, . . . , w2d, . . . , wdd),

defined by

fw(x) = w>φ(x) = w0 +

d∑
i=1

w0ixi +

d∑
i≤j

wijxixj .

(a) Given a 3-dimensional feature vector x = (x1, x2, x3) completely write out the quadratic expanded
feature vector φ(x).

(b) Implement the poly gd() function in hw1.py. The input is in the same format as it was in Problem
3. Implement gradient descent on this training set with w initialized to 0. Return w as the output
with terms in this exact order: bias, linear, then quadratic. For example, if d = 3 then you would
return (w0, w01, w02, w03, w11, w12, w13, w22, w23, w33).

Library routines: torch.cat, torch.ones, torch.zeros, torch.stack.

Hint: You will want to prepend a column of ones to X, and append to X the squared features in the
specified order. You can generate the squared features in the correct order using a nested for loop.

(c) Implement the poly normal function in hw1.py. You are given the same data set as from part (b),
but this time determine w by using the pseudoinverse. Return w in the same order as in part (b).

Library routines: torch.pinverse.

Hint: You will still need to transform the matrix X in the same way as in part (b).

(d) Implement the plot poly() function in hw1.py. Use the provided function hw1 utils.load reg data()

to generate a training set X and training labels Y. Plot the curve generated by poly normal() along
with the points from the data set. Return the plot as output and include it in your written submission.
Compare and contrast this plot with the plot from Problem 3. Which model appears to approximate
the data best? Justify your answer.

Library routines: plt.plot, plt.scatter, plt.show, plt.gcf.

(e) The Minsky-Papert XOR problem is a classification problem with data set:

X = {(−1,+1), (+1,−1), (−1,−1), (+1,+1)}

where the label for a given point (x1, x2) is given by its product x1x2. For example, the point
(−1,+1) would be given label y = (−1)(1) = −1. Implement the poly xor() function in hw1.py. In
this function you will load the XOR data set by calling the hw1 utils.load xor data() function,
and then apply the linear normal() and poly normal() functions to generate labels for the XOR
points. Include a plot of contour lines that show how each model classifies points in your written
submission. You may use contour plot() in hw1 utils.py. Return the labels for both the linear
model and the polynomial model in that order. Do both models correctly classify all points? (Note
that red corresponds to larger values and blue to smaller values when using contour plot).

Solution.

5

5. Logistic Regression.
Recall the empirical risk R̂ for logistic regression (as presented in lecture 3):

R̂log(w) =
1

n

n∑
i=1

ln(1 + exp(−yiw>xi)).

Here you will minimize this risk using gradient descent.

(a) In your written submission, derive the gradient descent update rule for this empirical risk by taking the
gradient. Write your answer in terms of the learning rate η, previous parameters w, new parameters
w′, number of examples n, and training examples xi. Show all of your steps.

(b) Implement the logistic() function in hw1.py. You are given as input a training set X, training
labels Y, a learning rate lrate, and number of gradient updates num iter. Implement gradient
descent to find parameters w that minimize the empirical risk R̂log(w). Perform gradient descent
for num iter updates with a learning rate of lrate, initializing w = 0 and returning w as output.
Don’t forget to prepend X with a column of ones.

Library routines: torch.matmul (@), torch.tensor.t, torch.exp.

(c) Implement the logistic vs ols() function in hw1.py. Use hw1 utils.load logistic data() to
generate a training set X and training labels Y. Run logistic(X,Y) from part (b) taking X and Y as
input to obtain parameters w (use the defaults for num iter and lrate). Also run linear gd(X,Y)

from Problem 3 to obtain parameters w. Plot the decision boundaries for your logistic regression
and least squares models along with the data X. Which model appears to classify the data better?
Explain why you believe your choice is the better classifier for this problem.

Library routines: torch.linspace, plt.scatter, plt.plot, plt.show, plt.gcf.

Solution.

6

