
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
FINAL EXAMINATION: PART 2 OF 2

Guy-Vincent Jourdan and Mehrdad Sabetzadeh
Copyrighted material – do not distribute

April 2021, duration: 110 minutes (exam) + 10 minutes (submission) = 120 minutes

Instructions
1. This is an open book examination and the only authorized resources are:

• Course lecture notes, laboratories, and assignments;
• Java Development Kit (JDK) on your local computer.

2. By submitting this examination, you agree to the following terms:

• You understand the importance of professional integrity in your education and future
career in engineering or computer science.

• You hereby certify that you have done and will do all work on this examination entirely by
yourself, without outside assistance or the use of unauthorized information sources.

• Furthermore, you will not provide assistance to others.

3. Anyone who fails to comply with these terms will be charged with academic fraud.

Marking scheme

Question Maximum
1 60
2 40

Total 100

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from
the instructors.

April 2021 ITI 1121 Page 2 of 8

Question 1 (60 marks)
For this question, you will write a program that transforms a given two-dimensional array of objects
(of a generic type E) into a grid-like linked structure. You will then implement certain operations as
well as an iterator over the resulting linked structure. Below, we illustrate the transformation for a
two-dimenstional array of integer objects (i.e., Integer[][]) and a two-dimenstional array of string
objects (i.e., String[][]), respectively.

topLeft

right0

down

right1

down

right2

right“A” right“B” <latexit sha1_base64="aoSNeZULgTCGAU+qkdsfM/tnwaQ=">AAACY3icZZDNSiQxFIVv1/yo5Tjj324YaGwX4qKpEkaXCkOL7hSmtaHTSCp1qw2dSook7V8omGeYrT6S8wDzAL6HqWoRSs/mXk5yPg43KQQ3Nor+t4IPHz99nptfCBe/LH39tryyembUVDPsMyWUHiTUoOAS+5ZbgYNCI80TgefJ5Ff1fn6F2nAlf9vbAkc5HUuecUattwabRKTKms2L5U7UjWq13y/xy9LZf6z17+RipdUjqWLTHKVlghozZEpmqFEyHLnjXq9nNZVlSKYGC8omdIyubtuwhkWaWbwZubGmxSVnN83AVIumQbWmt2UYEonXTOU5lakjKLBqUQ7jkXMkU8pKZdHwOySebU3mOnFZls1QziWvgq8paauE+1m6qAzbbeJPisxWfpPSxBj/RxWc1RhyZXxR3HbdHQ8mBdVEKi5TX87VEO5nkhnUHE17hvOHj9+e+f1yttONd7vRadQ5OPwDtebhO2zAFsSwBwdwBCfQBwYC/sI9PLSegsVgNViffQ1aswlr0FDw4xlUH8Ld</latexit>. . . right“M”right

down

right3

down

right4

down

right5

down

right“N”

down

right“O” <latexit sha1_base64="aoSNeZULgTCGAU+qkdsfM/tnwaQ=">AAACY3icZZDNSiQxFIVv1/yo5Tjj324YaGwX4qKpEkaXCkOL7hSmtaHTSCp1qw2dSook7V8omGeYrT6S8wDzAL6HqWoRSs/mXk5yPg43KQQ3Nor+t4IPHz99nptfCBe/LH39tryyembUVDPsMyWUHiTUoOAS+5ZbgYNCI80TgefJ5Ff1fn6F2nAlf9vbAkc5HUuecUattwabRKTKms2L5U7UjWq13y/xy9LZf6z17+RipdUjqWLTHKVlghozZEpmqFEyHLnjXq9nNZVlSKYGC8omdIyubtuwhkWaWbwZubGmxSVnN83AVIumQbWmt2UYEonXTOU5lakjKLBqUQ7jkXMkU8pKZdHwOySebU3mOnFZls1QziWvgq8paauE+1m6qAzbbeJPisxWfpPSxBj/RxWc1RhyZXxR3HbdHQ8mBdVEKi5TX87VEO5nkhnUHE17hvOHj9+e+f1yttONd7vRadQ5OPwDtebhO2zAFsSwBwdwBCfQBwYC/sI9PLSegsVgNViffQ1aswlr0FDw4xlUH8Ld</latexit>. . .
down

right“Z”right

down

down

right6

down

right7

down

right8

down down down"A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"
"N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

0 1 2
3 4 5
6 7 8

Integer[3][3]

String[2][13]

Linked Grid
Representation

Linked Grid
Representation

topLeft

Each node in the grid is an instance of the (nested) Node class, shown below. As seen from the
declaration of Node, each instance of Node points to two other Node instances: the node immediately
to its right and the node immediately below it. The rows in the grid are terminated with a null right
pointer; the columns are terminated with a null down pointer, as illustrated in the above �gure. The
grid has a perfectly rectangular shape; there are nomissing nodes in the grid structure.
public s t a t i c c lass Node<T> {

private T data ;
private Node<T> r ight , down;
. . . / / D e t a i l s removed due to spac e ; s e e th e Node c l a s s in LinkedGrid . java

}

Question 1 is decomposed into �ve subquestions: Q(uestions) 1.1 to 1.5. The implementation of
Question 1will all be done in LinkedGrid.java.Wehave provided youwith a shell implementation
that includes: (1) the declaration of the Node class (shown above), (2) the signatures of the methods
you need to implement in Q1.1 to Q1.4, (3) the skeleton code (including the Iterator interface) for
the LinkedGridIterator class in Q1.5, (4) the complete implentation of the toString()method
for LinkedGrid1, and (5) a Q1Test class that allows you to test your implementation.

Important! Question 1 does not require any exception handling beyond what is provided to you
in the shell implementation.

1toString() depends on getElementAt(...) in Q1.4.

April 2021 ITI 1121 Page 3 of 8

Question 1.1 Method addFirstRow(E[] array) and Constructor LinkedGrid(E[] array)
Complete the (private) addFirstRow(E[] array) method. When this method is called (by the
LinkedGrid constructors), the �rst row of the grid is created and the topLeft instance variable in
LinkedGrid is made to point to the �rst node in this row. The expected behaviour of the method is
illustrated in the �gure below. In addition, the method should set the rowCount and columnCount
instance variables in LinkedGrid (hint: rowCount should be set to 1 and columnCount should be
set to array.length). A�er completing addFirstRow(E[] array), proceed to complete Linked-
Grid(E[] array) (hint: you need to add only a single line of code to LinkedGrid(E[] array)).

down

right0

down

right1

down

right2

down

right“A”

down

right“B” <latexit sha1_base64="aoSNeZULgTCGAU+qkdsfM/tnwaQ=">AAACY3icZZDNSiQxFIVv1/yo5Tjj324YaGwX4qKpEkaXCkOL7hSmtaHTSCp1qw2dSook7V8omGeYrT6S8wDzAL6HqWoRSs/mXk5yPg43KQQ3Nor+t4IPHz99nptfCBe/LH39tryyembUVDPsMyWUHiTUoOAS+5ZbgYNCI80TgefJ5Ff1fn6F2nAlf9vbAkc5HUuecUattwabRKTKms2L5U7UjWq13y/xy9LZf6z17+RipdUjqWLTHKVlghozZEpmqFEyHLnjXq9nNZVlSKYGC8omdIyubtuwhkWaWbwZubGmxSVnN83AVIumQbWmt2UYEonXTOU5lakjKLBqUQ7jkXMkU8pKZdHwOySebU3mOnFZls1QziWvgq8paauE+1m6qAzbbeJPisxWfpPSxBj/RxWc1RhyZXxR3HbdHQ8mBdVEKi5TX87VEO5nkhnUHE17hvOHj9+e+f1yttONd7vRadQ5OPwDtebhO2zAFsSwBwdwBCfQBwYC/sI9PLSegsVgNViffQ1aswlr0FDw4xlUH8Ld</latexit>. . .
down

right“M”right

0 1 2

"A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"

Integer[]

String[]

addFirstRow

addFirstRow

topLeft

topLeft

Question 1.2 Method addRow(E[] array)
Complete the addRow(E[] array) method. When called, this method appends a new row to
the bottom of an existing grid. This behaviour is illustrated in the �gure below. Notice that the
addRow(E[] array)method can be called iteratively, with each call adding one row at the bottom
of the grid. To build the full integer grid in our illustration, addRow needs to be called twice, once
with [3, 4, 5] as parameter and then with [6, 7, 8] as parameter. Notice that the �rst row (that is, [0, 1, 2])
needs to have been added a priori by calling addFirstRow(E[] array) developed in Q1.1. Calling
addRow(E[] array) should further increase the rowCount instance variable by one.

down

right“A”

down

right“B” <latexit sha1_base64="aoSNeZULgTCGAU+qkdsfM/tnwaQ=">AAACY3icZZDNSiQxFIVv1/yo5Tjj324YaGwX4qKpEkaXCkOL7hSmtaHTSCp1qw2dSook7V8omGeYrT6S8wDzAL6HqWoRSs/mXk5yPg43KQQ3Nor+t4IPHz99nptfCBe/LH39tryyembUVDPsMyWUHiTUoOAS+5ZbgYNCI80TgefJ5Ff1fn6F2nAlf9vbAkc5HUuecUattwabRKTKms2L5U7UjWq13y/xy9LZf6z17+RipdUjqWLTHKVlghozZEpmqFEyHLnjXq9nNZVlSKYGC8omdIyubtuwhkWaWbwZubGmxSVnN83AVIumQbWmt2UYEonXTOU5lakjKLBqUQ7jkXMkU8pKZdHwOySebU3mOnFZls1QziWvgq8paauE+1m6qAzbbeJPisxWfpPSxBj/RxWc1RhyZXxR3HbdHQ8mBdVEKi5TX87VEO5nkhnUHE17hvOHj9+e+f1yttONd7vRadQ5OPwDtebhO2zAFsSwBwdwBCfQBwYC/sI9PLSegsVgNViffQ1aswlr0FDw4xlUH8Ld</latexit>. . .
down

right“M”right

down

right“N”

down

right“O” <latexit sha1_base64="aoSNeZULgTCGAU+qkdsfM/tnwaQ=">AAACY3icZZDNSiQxFIVv1/yo5Tjj324YaGwX4qKpEkaXCkOL7hSmtaHTSCp1qw2dSook7V8omGeYrT6S8wDzAL6HqWoRSs/mXk5yPg43KQQ3Nor+t4IPHz99nptfCBe/LH39tryyembUVDPsMyWUHiTUoOAS+5ZbgYNCI80TgefJ5Ff1fn6F2nAlf9vbAkc5HUuecUattwabRKTKms2L5U7UjWq13y/xy9LZf6z17+RipdUjqWLTHKVlghozZEpmqFEyHLnjXq9nNZVlSKYGC8omdIyubtuwhkWaWbwZubGmxSVnN83AVIumQbWmt2UYEonXTOU5lakjKLBqUQ7jkXMkU8pKZdHwOySebU3mOnFZls1QziWvgq8paauE+1m6qAzbbeJPisxWfpPSxBj/RxWc1RhyZXxR3HbdHQ8mBdVEKi5TX87VEO5nkhnUHE17hvOHj9+e+f1yttONd7vRadQ5OPwDtebhO2zAFsSwBwdwBCfQBwYC/sI9PLSegsVgNViffQ1aswlr0FDw4xlUH8Ld</latexit>. . .
down

right“Z”right

"N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

3 4 5
addRow

right0

down

right1

down

right2

down

right3

down

right4

down

right5

down

topLeft

topLeft

right3

down

right4

down

right5

down

right6

down

right7

down

right8

down

topLeft

right0

down

right1

down

right2

down6 7 8

addRow

addRow

April 2021 ITI 1121 Page 4 of 8

Question 1.3 Constructor LinkedGrid(E[][] array)
Equipped with addFirstRow(E[] array) in Q1.1 and addRow(E[] array) in Q1.2, complete the
LinkedGrid(E[][] array) constructor. The constructor takes as input a two-dimensional array
and builds a linked-grid representation of that array. If this constructor is implemented properly using
addFirstRow(E[] array) and addRow(E[] array), the rowCount and columnCount variables
should already be dealt with without additional code in the constructor.

Question 1.4 Method getElementAt(int i, int j)
Complete the getElementAt(int i, int j)method. This method returns the object stored at
row i and column j. For example, calling getElementAt(1, 2) over our illustrative integer grid
will return an Integer instance with value 5; and, calling getElementAt(0, 12) over our illustrative
string grid will return “M”.

Question 1.5 Class LinkedGridIterator
Complete the LinkedGridIterator() constructor and the hasNext() and next() methods in
LinkedGridIterator. As you do so, also de�ne any necessary instance variable(s) (in Linked-
GridIterator) that are used by hasNext() and next(). The iterator will return objects starting at
topLeft, progressing through the nodes in the �rst row, then moving on to the nodes in the second
row and so on. For instance, the sequence returned via iterating over our example integer grid will be
0, 1, 2, 3, 4, 5, 6, 7, 8, and the sequence returned via iterating over our example string grid will be “A”,
“B”, “C”, . . . , “X”, “Y”, “Z”.

Example Output

To test your implementation, run Q1Test. If your answers to Q1.1–Q1.5 are correct, the output
produced will be as shown below:
$ javac Q1Test.java
$ java Q1Test
==== Integer grid with 3 rows x 3 columns ====
[Test LinkedGrid(E[] array) / addFirstRow(...) and addRow(...)]
getTopLeft().getData(): 0
getTopLeft().getRight().getRight().getDown().getData(): 5
getTopLeft().getDown().getDown().getData(): 6
getTopLeft().getDown().getRight().getDown().getRight().getData(): 8

[Test getElementAt(...)] Print integer grid via toString() which uses getElementAt(...)
0, 1, 2
3, 4, 5
6, 7, 8

[Test LinkedGridIterator] Print integer grid via an iterator
0, 1, 2, 3, 4, 5, 6, 7, 8

==== String grid with 2 rows x 13 columns ====
[Test LinkedGrid(E[] array) / addFirstRow(...) and addRow(...)]
getTopLeft().getData(): A
getTopLeft().getRight().getRight().getRight().getRight().getDown().getData(): R
getTopLeft().getDown().getRight().getData(): O
getTopLeft().getDown().getRight().getRight().getRight().getRight().getRight().getRight().getData(): T

[Test getElementAt(...)] Print string grid via toString() which uses getElementAt(...)
A, B, C, D, E, F, G, H, I, J, K, L, M
N, O, P, Q, R, S, T, U, V, W, X, Y, Z

[Test LinkedGridIterator] Print string grid via an iterator
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

April 2021 ITI 1121 Page 5 of 8

==== Integer grid with 3 rows x 3 columns ====
[Test LinkedGrid(E[][] array)]
getTopLeft().getData(): 0
getTopLeft().getRight().getRight().getDown().getData(): 5
getTopLeft().getDown().getDown().getData(): 6
getTopLeft().getDown().getRight().getDown().getRight().getData(): 8

[Test getElementAt(...)] Print integer grid via toString() which uses getElementAt(...)
0, 1, 2
3, 4, 5
6, 7, 8

[Test LinkedGridIterator] Print integer grid via an iterator
0, 1, 2, 3, 4, 5, 6, 7, 8

==== String grid with 2 rows x 13 columns ====
[Test LinkedGrid(E[][] array)]
getTopLeft().getData(): A
getTopLeft().getRight().getRight().getRight().getRight().getDown().getData(): R
getTopLeft().getDown().getRight().getData(): O
getTopLeft().getDown().getRight().getRight().getRight().getRight().getRight().getRight().getData(): T

[Test getElementAt(...)] Print string grid via toString() which uses getElementAt(...)
A, B, C, D, E, F, G, H, I, J, K, L, M
N, O, P, Q, R, S, T, U, V, W, X, Y, Z

[Test LinkedGridIterator] Print string grid via an iterator
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
$

Important Restrictions for Question 1

• You cannot de�ne any new class variable or instance variable in LinkedGrid.2

• You cannot import anything at all, except what has been already imported.3

• You cannot use any other class than the ones we provide.

• You submit only one version of LinkedGrid.java, containing your answer to all �ve questions.

• You can change Q1Test.java if youwant to perform additional testing, but for your submission,
leave Q1Test.java just as you found it in the template code.

Files
• LinkedGrid.java (you need to update this �le).
• Iterator.java
• Q1Test.java

2You need and are thus pemitted to de�ne instance variables in the iterator class, i.e., LinkedGridIterator.
3 java.util.NoSuchElementException

April 2021 ITI 1121 Page 6 of 8

Question 2 (40 marks)
For this question, you are going to develop a specialization (subclass) of LinkedQueue. LinkedQueue
has been already covered in the course lectures. The subclass, named Uniqui�ableLinkedQueue,
provides a single additional method, named uniquify().
public c lass UniquifiableLinkedQueue <E> extends LinkedQueue<E> {

public Queue<E> uniquify () {
/ / A l l th e code tha t you wr i t e f o r Ques t ion 2 goe s he r e !

}
}

The method uniquify() does the following:

It returns a queue which is the same as the Uniqui�ableLinkedQueue instance that themethod is
called on, except that the returned queue has no immediately consecutive duplicate elements.

To illustrate what “immediately consecutive duplicate elements” are, consider the example queue
below:

immediately consecutive
duplicate elements

Front of the queue Rear of the queueaa b b b c d d d e e

immediately consecutive
duplicate elements

immediately consecutive
duplicate elements

immediately consecutive
duplicate elements

More precisely, two queue elements are immediately consecutive duplicate elements, when they
are adjacent and have identical content. Having identical content for (non-null) queue elements elem1
and elem2means that elem1.equals(elem2) is true. In other words, the concept of immediately
consecutive duplicate elements is exactly the same as that in Q2 of the midterm. However, whereas
Q2 in the midterm was concerned with stacks, here, we are working with queues. You can assume
that all queue elements are non-null.

In Question 2, you complete themethod uniquify() in theUniqui�ableLinkedQueue class, so that
only one instance of immediately consecutive duplicate elements would be retained. For example, if
uniquify() is called over the example queue above (an instance of UniquifiableLinkedQueue<String>),
the result should be as shown in the �gure below.

Front of the queue Rear of the queueba c d e

April 2021 ITI 1121 Page 7 of 8

Note that uniquify() should not have any side e�ect on the Uniqui�ableLinkedQueue instance
that the method is called on. Furthermore, uniquify() is not meant to deal with non-consecutive
duplicate elements. In other words, the queue returned by uniquify() can have non-consecutive
duplicate elements. The absence of side e�ects on the original queue as well as the carry-over of
non-consecutive duplicate elements to the result of uniquify() are illustrated in the example output
by Q2Test, presented next.

Example Output

To test your implementation of uniquify(), you can use theQ2Test.java in the template code provided
to you. The output from running Q2Test should be as follows:

Original Integer Queue: Front -> [0, 1, 1, 1, 2, 2, 3, 3, 3, 4] <- Rear
Integer Queue without immediately consecutive duplicates: Front -> [0, 1, 2, 3, 4] <- Rear
Original Integer Queue (after uniquify): Front -> [0, 1, 1, 1, 2, 2, 3, 3, 3, 4] <- Rear

Original String Queue: Front -> [a, a, b, b, b, c, d, d, d, e, e] <- Rear
String Queue without immediately consecutive duplicates: Front -> [a, b, c, d, e] <- Rear
Original String Queue (after uniquify): Front -> [a, a, b, b, b, c, d, d, d, e, e] <- Rear

---- Now, testing with some non-consecutive duplicates -----

Original String Queue: Front -> [a, b, b, c, a, d, d, e, e, d, d, d, d, b] <- Rear
String Queue without immediately consecutive duplicates: Front -> [a, b, c, a, d, e, d, b] <- Rear
Original String Queue (after uniquify): Front -> [a, b, b, c, a, d, d, e, e, d, d, d, d, b] <- Rear

Important Restrictions for Question 2

• You cannot change either LinkedQueue.java or Queue.java. You can change Q2Test.java
if youwould like to performadditional testing, but for your submission, please leaveQ2Test.java
just as you found it in the template code.

• All your variables should be local variables. You cannot declare any class or instance variables
in Uniqui�ableLinkedQueue (or anywhere else for that matter).

• The local reference variables in uniquify() as well as in any helper private methods that you
may implement can only be of type E (that is, the generic type parameter) or of type Queue<E>.
Stated otherwise, you cannot declare any reference variable that has a di�erent type than either
E or Queue<E>.

• You are allowed to use local primitive variables if you �nd them necessary, but please note that
it is feasible to implement uniquify() without using any local primitive variables.

Files
• UniquifiableLinkedQueue.java (you need to update this one).
• LinkedQueue.java
• Queue.java
• Q2Test.java

Rules and regulation
• Submit your examination through Brightspace.

April 2021 ITI 1121 Page 8 of 8

• You must do this examination individually.

• You must use the provided template classes.

• It is your responsibility to make sure that Brightspace has received your examination.

• Late submissions will not be graded.

Files
• Download the archive f2_3000000.zip;

• Unzip the �le and rename the directory, replacing 3000000 by your student id;

• Add your name and student id in a comment in LinkedGrid.java and
Uniqui�ableLinkedQueue.java;

You must submit a zip �le (no other �le format will be accepted). The name of the top directory has to
have the following form: f2_3000000, where 3000000 is your student number. The name of the folder
starts with the letter “f” (lowercase), followed by 2, since this is part 2 of the �nal examination. The
segments are separated by the underscore (not the hyphen). There are no spaces in the name of the
directory. Your submission must contain the following �les, and nothing else. In particular, do not
submit the byte-code (.class) �les.

• README.txt

– A text �le that contains your name and student id

• LinkedGrid.java (you need to update this �le)

• Iterator.java

• Q1Test.java

• UniquifiableLinkedQueue.java (you need to update this �le)

• LinkedQueue.java

• Queue.java

• Q2Test.java

